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A multimodal vision foundation model for 
clinical dermatology

Diagnosing and treating skin diseases require advanced visual skills across 
domains and the ability to synthesize information from multiple imaging 
modalities. While current deep learning models excel at specific tasks 
such as skin cancer diagnosis from dermoscopic images, they struggle 
to meet the complex, multimodal requirements of clinical practice. Here 
we introduce PanDerm, a multimodal dermatology foundation model 
pretrained through self-supervised learning on over 2 million real-world 
skin disease images from 11 clinical institutions across 4 imaging modalities. 
We evaluated PanDerm on 28 diverse benchmarks, including skin cancer 
screening, risk stratification, differential diagnosis of common and rare skin 
conditions, lesion segmentation, longitudinal monitoring, and metastasis 
prediction and prognosis. PanDerm achieved state-of-the-art performance 
across all evaluated tasks, often outperforming existing models when 
using only 10% of labeled data. We conducted three reader studies to assess 
PanDerm’s potential clinical utility. PanDerm outperformed clinicians by 
10.2% in early-stage melanoma detection through longitudinal analysis, 
improved clinicians’ skin cancer diagnostic accuracy by 11% on dermoscopy 
images and enhanced nondermatologist healthcare providers’ differential 
diagnosis by 16.5% across 128 skin conditions on clinical photographs. 
These results show PanDerm’s potential to improve patient care across 
diverse clinical scenarios and serve as a model for developing multimodal 
foundation models in other medical specialties, potentially accelerating the 
integration of artificial intelligence support in healthcare.
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There is a pressing need to fully harness the potential of artificial intel-
ligence (AI) in diagnosing and managing skin diseases. Although deep 
learning has shown remarkable performance, often matching or sur-
passing dermatologists, current AI models for dermatology remain lim-
ited to isolated tasks, such as diagnosing skin cancer from dermoscopic 
images1. These models struggle to integrate various data types and 
imaging modalities, reducing their utility in different real-world clinical 
settings. Dermatology, like internal medicine, is inherently complex, 
encompassing a broad spectrum of conditions from common derma-
toses to life-threatening malignancies, necessitating a comprehensive, 
patient-centered approach that integrates various clinical workflows.

In clinical practice, diagnosing and treating skin conditions 
involves a range of tasks, including total-body skin cancer detection 

and risk assessment2–5, differential diagnosis of hundreds of dermato-
logical conditions such as inflammatory dermatoses and pigmentary 
disorders6, multimodal image analysis7,8, pathology interpretation9,10, 
monitoring lesion changes11,12 and predicting outcomes13,14. The 
absence of integrated AI solutions capable of supporting these various 
workflows currently hampers the practical impact of AI in dermatology. 
Recent advances in foundation models have emerged as a promising 
direction to address this challenge15,16.

Foundation models are large-scale neural networks pretrained 
on vast, diverse data using self-supervised learning techniques, often 
leveraging weakly labeled or unlabeled data17–19. Built on rich knowl-
edge representations, these models have shown impressive perfor-
mance across medical fields such as ophthalmology20, radiology21 
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Fig. 1 | Overview of this study. a–c, Pretraining dataset: 2.1 million dermatological 
images from 11 clinical sources across 4 modalities, shown by modality (a), source 
(b) and institution (c). d, PanDerm interprets multiple imaging modalities for 
various dermatology tasks, evaluated in real-world melanoma screening and 
three reader studies. Image types include dermatopathology (microscopic 
biopsy specimens), clinical (wide-field lesion and surrounding skin), dermoscopic 
(close-up dermoscope images) and TBP tiles (lesion crops). e, Architecture: 

ViT-large encoder, regressor and CLIP-based teacher model, with representation 
reconstruction and CLIP latent alignment objectives. f, Performance versus 
pretraining data size and epochs (average AUROC on 8 benchmarks) compared 
with alternative strategies. g, PanDerm outperforms existing models on 28 
evaluation datasets across 4 modalities. All icons in d are from Flaticon.com, 
except for the risk stratification, lesion change detection and survival analysis 
icons, which are from Microsoft PowerPoint.
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and pathology22–25. Through comprehensive pretraining on large and 
diverse data, these models develop versatile representations that can 
effectively adapt to various clinical scenarios, outperforming previous 
deep learning models in downstream tasks. Their strong feature repre-
sentations also enable data-efficient applications26,27, requiring fewer 
labeled samples, which is particularly crucial for medical domains in 
which expert-annotated data are often limited.

However, developing effective foundation models for dermatology 
presents unique challenges. The performance of foundation models is 
inherently linked to the scale of their parameters and training data28–30. 
In general computer vision, foundation models are pretrained on mas-
sive datasets such as ImageNet31 or JFT-300M (ref. 32) and most exist-
ing dermatology AI models still rely on these models for downstream 
adaptation. Some efforts have focused on self-supervised learning 
specifically for dermatology using public datasets33,34 or web-sourced 
skin images35. However, these approaches are often limited by dataset 
size, diversity or the lack of real patient data. Moreover, while recent 
advances in medical foundation models have shown promise in vari-
ous specialties, they cannot fully address dermatology’s unique needs. 
Specialty-specific foundation models20,21,23 typically focus on single 
imaging modalities, while general biomedical models, despite their 
broad scope, struggle with domain-specific data scarcity and integrat-
ing heterogeneous modalities for comprehensive clinical analysis.

Here we introduce PanDerm, a general-purpose, multimodal der-
matology foundation model. Uniquely designed to integrate multiple 
imaging modalities, PanDerm is pretrained on over 2 million images 
sourced from 11 institutions across multiple countries, covering 4 imag-
ing modalities spanning diverse dermatological conditions (Fig. 1a–c). 
In the pretraining stage, PanDerm uses the masked latent modeling and 
contrastive language-image pre-training (CLIP)36 feature alignment 
for self-supervised learning (Fig. 1e and Methods), showing supe-
rior data scalability and training efficiency compared with existing 
self-supervised algorithms (Fig. 1f). The model achieves unified repre-
sentation learning across total-body photography (TBP) and clinical, 
dermoscopic and dermatopathology images, enabling comprehensive 
patient analysis throughout diverse clinical workflows (Fig. 1d).

We systematically evaluate PanDerm across 28 benchmarks 
(Fig. 1g), covering a diverse array of clinical tasks, including screening, 
risk stratification, phenotype assessment, nevus counting, longitudinal 
monitoring, lesion change detection, diagnosis of both common and 
rare skin conditions and skin lesion segmentation, as well as recurrence 
prediction and prognosis. PanDerm achieves state-of-the-art perfor-
mance on all tasks, often using only 5–10% of the labeled training data 
typically required. Through three reader studies, we show that this 
unified multimodal approach outperforms clinicians in early-stage 
melanoma detection, enhances clinicians’ diagnostic accuracy in skin 
cancer diagnosis and supports nonspecialist healthcare providers 
in the differential diagnosis of diverse skin conditions. These find-
ings highlight the potential of specialty-specific foundation models 
to advance medical practice by integrating diverse modalities, with 
broader implications for AI development across healthcare specialties.

Results
Ablation studies and training strategy comparisons
To evaluate PanDerm’s effectiveness, we conducted systematic analyses 
examining how model performance scales with training data and com-
putational resources (datasets described in Supplementary Table 1). 
First, compared with existing dermatology-specific models, PanDerm 
showed strong scalability as training data increased from 0.8 to 1.8 mil-
lion skin images (Fig. 1f, left). Notably, it achieved superior performance 
to SwAVDerm35, a leading dermatology self-supervised learning model, 
using 33% less training data. When compared with other self-supervised 
training techniques, PanDerm showed remarkable computational 
efficiency, requiring only 200 training epochs to achieve the best 
performance, compared with 500–800 epochs needed by leading 

methods such as MILAN37, DINOv2 (ref. 38) and MAE19 (Fig. 1f, right). 
Furthermore, PanDerm also surpassed vision-language models such 
as CLIP36, MONET39 and biomedical-specific CLIP (BiomedCLIP)40 in 
benchmark evaluations (Supplementary Table 1), while showing emer-
gent capabilities in dermatology similar to those of DINOv2 in natural 
images, with linear probing performance comparable to full-parameter 
fine-tuning (Supplementary Table 2). When evaluated against gener-
alist biomedical foundation models, PanDerm showed substantial 
advantages across different dermatological tasks. Compared with a 
representative model in this category, BiomedGPT41, PanDerm showed 
20.9% better area under the receiver operating characteristic curve 
(AUROC) in melanoma detection, 34.7% higher weighted F1 score in 
differentiating between skin conditions and 19.6% improved weighted 
F1 in analyzing microscopic skin tissue images (Extended Data Table 1). 
Even using computationally efficient methods, PanDerm maintained 
its advantages, outperforming both linear-probe and fine-tune ver-
sions of BiomedGPT by 14.3% and 5.1%, respectively, in linear probing 
(Supplementary Table 3). On the basis of these promising results, we 
expanded our evaluation to compare PanDerm with three representa-
tive AI models: SL-Imagenet31 and DINOv2 (ref. 38) (both widely used 
foundation models pretrained on natural images with a ViT-Large42 
backbone), and SwAVDerm35 (a self-supervised model pretrained on 
a large skin image dataset from search engines).

Diagnostic performance and generalization ability across 
datasets
We systematically evaluated PanDerm diagnostic performance across 
10 public datasets from 4 imaging modalities and 7 international sites 
(Fig. 2a). These datasets covered multi-class classification of pigmented 
neoplastic lesions and binary melanoma diagnosis tasks. PanDerm 
consistently outperformed all other models, achieving significant 
improvements on 9 of 10 datasets, with average gains of 5.1%, 8.0%, 4.2% 
and 0.9% on dermoscopic, clinical, TBP and pathology datasets, respec-
tively (Fig. 2a). On representative dermoscopy and clinical benchmarks 
such as HAM10000 (ref. 34) and PAD-UFES-20 (ref. 43), PanDerm sur-
passed the next-best models by 4.7% (P < 0.001) and 9.0% (P < 0.001), 
respectively (Fig. 2a, Supplementary Table 4 and Extended Data Fig. 1).

PanDerm showed strong performance even with limited training 
data, achieving comparable results to other models while using only 
10–30% of the labeled images (Fig. 2b and Supplementary Tables 5–10). 
Additional results for other tasks are presented in Extended Data Fig. 2. 
To test PanDerm’s generalization applicability, we evaluated its perfor-
mance on melanoma diagnosis using images from seven external medi-
cal centers, representing patient populations different from the training 
data. PanDerm showed significant superiority over all pretrained mod-
els, achieving higher AUROC scores across all external datasets (Fig. 2c). 
Notably, it maintained high performance even on clinical photographs 
that were not used during training, with AUROC gains of 4.0%, 2.6% and 
2.1% on the three external clinical datasets (all P < 0.001).

Beyond skin cancer diagnosis, we evaluated PanDerm’s ability to 
diagnose a broader range of skin conditions commonly seen in clinical 
practice. We tested on three complementary datasets: the public Derm-
Net dataset44 covering 23 common conditions, along with two internal 
datasets (MMT-09 with 9 conditions and MMT-74 with 74 conditions) 
comprising 38,476 clinical images across 9 broad and 74 fine-grained 
skin conditions. These datasets comprehensively cover inflammatory 
diseases, infections, various types of skin tumors and other frequently 
encountered skin problems. As shown in Fig. 2d, PanDerm achieved 
weighted F1 improvements of 3.2%, 7.1% and 8.2% on MMT-09, DermNet 
and MMT-74, respectively, compared with the next-best models (all 
P < 0.001). PanDerm’s advantage grew larger as the number of conditions 
increased, showing its strong capability to handle complex, multi-disease 
scenarios. PanDerm also outperformed all other pretrained models on all 
metrics across the three datasets (all P < 0.001; Supplementary Table 11). 
In the DermNet dataset, PanDerm exceeded the next-best model’s area 
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under the precision–recall curve (AUPR) by 14.7%. Further details on 
the experimental setup, datasets and metrics are provided in Methods.

Short-term lesion change detection in sequential dermoscopic 
images
Monitoring suspicious melanocytic lesions over a 3-month period is a 
widely accepted procedure for early melanoma detection, as changes 
often prompt excision to rule out melanoma, while stability can be 
reassuring12. We evaluated PanDerm’s ability to detect subtle changes in 
lesions over time by analyzing pairs of sequential dermoscopic images. 
To ensure accurate comparison despite variations in imaging condi-
tions, we developed a comprehensive image-processing system that 

standardizes image quality and alignment (Extended Data Fig. 3). 
This processing system, combined with PanDerm’s advanced lesion 
change detection capabilities45, significantly improved change detec-
tion accuracy from 0.596 (95% confidence interval (CI) 0.567–0.624) 
to 0.706 (95% CI 0.686–0.725) in sequential digital dermoscopic 
imaging data (SDDI1) (Fig. 3a,c) (P < 0.001) and from 0.683 (95% CI 
0.517–0.894) to 0.767 (95% CI 0.649–0.886) in SDDI2 (Fig. 3b,c, left) 
(P < 0.001). Using the optimized pipeline for all models, PanDerm 
achieved AUROC improvements of 4.3% in SDDI1 (P < 0.001) and  
3.7% in SDDI2 over the next-best model (Fig. 3c, middle). For lesions  
later diagnosed as malignant, PanDerm achieved an AUROC of  
0.840 (95% CI 0.769–0.911), surpassing the next-best model by 15.0% 
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(P < 0.01) (Fig. 3c, right). Further details on the lesion change detection 
method and dataset details are provided in Methods and Supple
mentary Tables 12–14.

Melanoma metastasis prediction and survival analysis
We explored PanDerm’s potential to predict melanoma progression 
from dermoscopic images, an emerging approach that could provide 
valuable prognostic information at the time of diagnosis13,14,46 (Fig. 3e). 

We evaluated this capability using 680 dermoscopic images from 370 
patients with invasive primary melanoma across multiple international 
centers (Fig. 3f). PanDerm showed exceptional accuracy in distinguish-
ing melanomas likely to metastasize, achieving an AUROC of 0.964 (95% 
CI 0.937–0.991), surpassing the next-best model by 2.0% (P = 0.073) 
(Fig. 3d). It also showed strong capability in differentiating between 
local and distant metastases, outperforming existing methods by 2.8% 
(P < 0.05) in the weighted F1 score (Supplementary Table 15).
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To validate PanDerm’s clinical utility for patient risk stratification, 
we conducted survival analyses using Kaplan–Meier analysis and Cox 
proportional hazards regression. Patients classified as high risk by 
PanDerm showed significantly shorter recurrence-free intervals (RFIs) 
compared with those in the low-risk group (hazard ratio (HR) 5.63; 95% 
CI 2.87–11.02, P < 0.001) (Fig. 3g). When compared alongside standard 
clinical risk factors—including sex, age, Breslow thickness, ulcera-
tion, dermal mitosis, location and melanoma subtype—PanDerm’s 
predictions emerged as the strongest indicator of recurrence risk in 
multivariate Cox regression (Fig. 3h). It maintained high predictive 
accuracy over extended follow-up periods, with time-dependent areas 
under the curve (AUCs) of 0.950 (95% CI 0.910–0.991), 0.931 (95% CI 
0.887–0.976) and 0.909 (95% CI 0.880–0.937) at 3 years, 5 years and 
7 years, exceeding multi-clinical variables by 6.8%, 2.9% and 5.0%, 
respectively (Fig. 3i). Combining PanDerm’s predictions with clinical 
factors further improved long-term prognostic accuracy in AUCs at 
5 years and 7 years. PanDerm also consistently outperformed other AI 
approaches (Fig. 3j), showing improvements of 2.3%, 3.0% and 2.5% at 
3 years, 5 years and 7 years, respectively. Further details are provided 
in Methods and Supplementary Tables 16 and 17.

Risk assessment and malignant lesion screening using TBP
We next evaluated PanDerm’s capability in analyzing whole-body imag-
ing (TBP)2,3,47 (Fig. 4a). Unlike close-up imaging of individual lesions, TBP 
enables comprehensive patient-level analysis, particularly for critical 
melanoma risk factors such as photodamage and nevus count4,5,48. In a 
cohort of 480 patients with 196,933 lesions from Australia, PanDerm 
achieved a weighted F1 score of 0.896 (95% CI 0.879–0.913) for photo-
damage assessment and an AUROC of 0.983 (95% CI 0.979–0.987) for 
nevus counting, surpassing all other models (P < 0.05 and P < 0.001, 
respectively; Fig. 4b,c,g). Even with limited training data (10% of the full 
dataset), PanDerm maintained superior performance (Extended Data 
Fig. 2). In lesion-specific risk stratification, PanDerm also ranked first 
with an AUROC of 0.705 (95% CI 0.698–0.712) and balanced accuracy 
(BACC) of 0.657 (95% CI 0.6513–0.663), with all results statistically 
significant (P < 0.001; Fig. 4d,h).

In a clinical validation study, PanDerm effectively identified malig-
nant lesions among a large number of benign ones (216 malignant 
versus 197,716 benign lesions) from the high-risk melanoma of patients 
(HOP) study49 and mind your model (MYM) study50 cohort (Fig. 4e). 
Using TBP images alone, PanDerm achieved a sensitivity of 0.893, 
outperforming the next-best model by 4.2% (Fig. 4j, left). When clini-
cal measurements were available for all models, PanDerm maintained 
its advantage with a 3.5% higher sensitivity (Fig. 4j, right), reaching a 
sensitivity of 0.893. Significantly, it detected malignant lesions in 79 out 
of 80 patients while reducing unnecessary examinations by 60.8% com-
pared with melanographers (3,498 versus 8,913 lesions recommended 
for detailed examination) (Fig. 4j,k and Supplementary Table 18).

We observed that PanDerm’s analysis approach aligned well with 
established clinical practice, particularly the ‘ugly duckling’ (UD) 
concept51 of identifying atypical lesions through comparison with 
a patient’s other lesions. This was shown through UMAP visualiza-
tion (Fig. 4f), where PanDerm’s feature effectively separated suspi-
cious lesions. The clustering patterns in PanDerm’s risk assessment 
(Fig. 4l) showed correspondence closely with human screening pat-
terns (Fig. 4i), illustrating its exceptional performance in malignant 
lesion screening. Additional details are provided in Methods, Supple-
mentary Tables 18–21 and Extended Data Fig. 4.

Skin lesion segmentation
We evaluated PanDerm’s performance on skin lesion segmentation 
using the ISIC2018 (ref. 52) and HAM10000 (ref. 34) datasets. Com-
pared with existing methods including SL-Imagenet, autoSMIM33 and 
BATFormer33, PanDerm achieved significantly higher performance, 
surpassing the next best by 3.1% and 1.9% in the Jaccard index on both 

datasets (P < 0.001; Extended Data Fig. 5a,b). PanDerm’s performance 
was particularly noteworthy in label-limited scenarios, matching the 
next-best model while using only 5% of the training data (104 and 350 
images for ISIC2018 and HAM10000, respectively; Extended Data 
Fig. 5c,d). When compared with MedSAM53, a medical image segmen-
tation foundation model, PanDerm showed slightly better accuracy 
(0.5% improvement, P = 0.025 and 0.112; Supplementary Table 22). This 
is particularly impressive as PanDerm achieves this performance with-
out specialized training for image segmentation. In addition, PanDerm 
offers practical advantages in clinical settings, processing images about 
four to five times faster than MedSAM while using less computational 
resources (Supplementary Table 23). Visual examples and detailed 
performance metrics are provided in Extended Data Fig. 6 and Sup-
plementary Tables 22–25.

Reader studies
To assess PanDerm’s clinical applicability, we conducted three reader 
studies evaluating its capabilities across different aspects and modali-
ties of dermatological diagnosis, as follows.

Early melanoma detection compared with clinicians. To examine 
PanDerm’s capability in early melanoma detection, we compared it with 
12 human reviewers (7 experienced dermatologists and 5 dermatologist 
trainees) using sequential dermoscopic images from Alfred Hospital54, 
featuring multiple follow-up images of the same lesions over time. The 
study evaluated two key aspects: overall diagnostic accuracy and early 
melanoma detection capability. In terms of overall accuracy, PanDerm 
outperformed the average human reviewer by 10.2% and surpassed 
the best-performing human by 3.6%. For early detection, we assessed 
the time point of the first suspicious changes detected in sequential 
images relative to clinical diagnosis and biopsy confirmation. PanDerm 
showed superior ability in this challenging task, correctly identifying 
77.5% (69 out of 89) of melanoma lesions at the first imaging time point, 
compared with only 32.6% (29 correct diagnoses) for human reviewers 
(Extended Data Fig. 7). Individual dots in the histograms represent the 
earliest correct diagnosis time points for both PanDerm and human 
reviewers, visualizing the comparative early detection performance.

Human–AI collaboration for skin cancer diagnosis. We evaluated 
PanDerm’s impact on clinicians’ diagnostic accuracy across seven 
pigmented lesion classes using dermoscopic images (Fig. 5a). The 
study included 41 clinicians with varying levels of competency who 
evaluated cases both with and without PanDerm’s multi-probability 
prediction support. PanDerm’s assistance significantly increased over-
all diagnostic accuracy from 0.69 (95% CI 0.65–0.73) to 0.80 (95% CI 
0.76–0.84, P < 0.001; Fig. 5b). Notably, clinicians with lower compe-
tency levels showed the greatest improvement, with accuracy gains 
of 17% (P = 0.0082) for those with low competency and 12% (P < 0.001) 
for those with medium competency, while highly competent clinicians 
showed a 6% improvement (P = 0.039; Fig. 5c and Supplementary 
Table 26). Class-specific analysis revealed significant accuracy improve-
ments in 4 of 7 lesion classes (P < 0.05; Fig. 5d and Supplementary 
Table 27). For melanoma diagnosis specifically, PanDerm enhanced cli-
nician accuracy from 0.69 (95% CI 0.64–0.74) to 0.83 (95% CI 0.79–0.87, 
P < 0.001). In addition, PanDerm alone achieved diagnostic accuracy 
comparable to that of clinicians with PanDerm assistance (0.81 versus 
0.80; P = 0.779).

Human–AI collaboration for 128 skin condition diagnoses. We con-
ducted a comprehensive reader study evaluating PanDerm’s diagnostic 
capabilities across 128 skin conditions using clinical photos. The study 
included 37 readers from 5 countries (Fig. 6b) and comprised 2 groups 
(Fig. 6a): the dermatology group (n = 20; 11 dermatology trainees 
and 9 specialists) and the generalist group (n = 17; 7 pre-vocational 
trainees, 8 GPs, 1 nurse and 1 clinical trial assistant). This grouping 
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represents the distinction in specialty training backgrounds between 
dermatology-trained practitioners and those with general medical 
training. Each reader assessed up to 50 cases from a 200-case pool, 
providing their top 3 diagnoses both with and without PanDerm’s 
assistance. Four experienced dermatologists developed a standardized 
ontology for condition categorization (Extended Data Fig. 8). Perfor-
mance was assessed primarily using 2 metrics: a 4-point diagnostic 
assessment scale for top 1 diagnosis (4, exact ontology match, to 1, sig-
nificant mismatch) and top 3 diagnostic accuracy, with 3 independent 

dermatologists scoring and resolving discrepancies through panel 
review. PanDerm’s assistance significantly improved the average top 1  
diagnostic scores of all readers from 2.83 to 3.08 (P < 0.001; Fig. 6c) 
and top 3 diagnostic accuracy from 54% to 63.4% (P < 0.001; Fig. 6d), 
while increasing readers’ diagnostic confidence (2.17 to 2.42, P < 0.001; 
Fig. 6e). The impact was particularly pronounced in the generalist 
group, showing higher diagnosis modification rates (28.6% versus 12.9% 
in the dermatology group; Fig. 6f) and greater improvements in both 
top 1 diagnostic scores (generalist group, +0.45; dermatology group, 
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+0.25; Fig. 6g) and top 3 accuracy (generalist group, +16.5%; derma-
tology group, +10.3%; Fig. 6h). Analysis by condition classes showed 
consistent improvements across inflammatory, neoplastic and other 
categories (P < 0.05; Fig. 6i,j), with inflammatory conditions show-
ing the largest gains (+0.36 in top 1 diagnostic scores, +14.2% in top 3 
accuracy). Furthermore, when used independently, PanDerm achieved 
higher diagnostic accuracy than both unassisted readers (top 1 scores: 
3.6 versus 2.83; P < 0.001) and human–AI collaboration (top 1 scores: 
3.6 versus 3.08; P < 0.001). Further details on the setup, methodology, 
reader statistics and datasets of all three reader studies are provided 
in Methods, Extended Data Fig. 9 and Supplementary Tables 26–29.

Discussion
Despite significant advances in AI technology, its application in clinical 
medicine remains fragmented and underutilized. Current AI systems 
are often restricted to isolated tasks and are unable to address the 
diverse demands of medical decision-making. This limits the potential 
of AI in supporting clinicians in disease diagnosis and management. 
Dermatology, with its complex requirements, including holistic patient 
assessment, lesion-specific analysis and potential use of various imag-
ing modalities, serves as an ideal use case for showing AI’s capabilities 
across multiple interconnected clinical tasks. Success in this domain 
could pave the way for broader adoption of AI models across healthcare.

In this study, we introduce PanDerm, a versatile dermatology 
foundation model trained through self-supervised learning on over 
two million multimodal dermatological images. Central to PanDerm’s 
development was the curation of a large and diverse image dataset 
sourced primarily from in-house collections and carefully selected 
public repositories. This approach contrasts with previous efforts, 
such as SwAVDerm35, which relied on web-sourced skin data, inad-
vertently incorporating images from commonly used benchmarks 
such as ISIC55 and DermNet44, increasing the risk of data leakage and 
compromising evaluation validity. Our strategy minimizes this risk, 
ensuring that benchmark evaluations accurately reflect real-world 
model performance.

To evaluate PanDerm’s clinical utility, we conducted validations 
across 28 benchmark datasets, spanning comprehensive skin cancer 
assessment and a diverse set of primary care dermatological condi-
tions. For skin cancer-related assessment, PanDerm outperformed 
existing models in specialized tasks across various modalities, includ-
ing risk stratification of lesions, phenotype assessment, detection of 
lesion changes and malignancy, multi-class cancer diagnosis, lesion 
segmentation, and metastasis prediction and prognosis. In particular, 
PanDerm achieved the most results using only 10% of the task-specific 
training data typically required by existing models, helping alleviate the 

scarcity of specialist-labeled data in medical AI. In primary care derma-
tology settings, PanDerm also outperformed comparative models in 
diagnosing a diverse set of conditions such as inflammatory diseases, 
infectious conditions and frequently encountered dermatoses. These 
capabilities stem from its rich knowledge representation, developed 
through pretraining on varied dermatological image modalities and 
conditions, leading to consistent and significant performance improve-
ments across tasks and modalities.

Three reader studies further supported these benchmark findings, 
suggesting PanDerm’s potential to assist clinical practice across dif-
ferent healthcare settings and specialty training backgrounds. In skin 
cancer diagnosis, PanDerm showed capabilities to improve diagnostic 
accuracy across clinicians of varying competence levels and identify 
concerning lesions before clinician detection—potentially facilitating 
earlier intervention. In general dermatology, PanDerm improved read-
ers’ differential diagnosis across various skin conditions (for example, 
inflammatory dermatoses, cutaneous neoplasms and pigmentary 
disorders), with more substantial benefits observed among general-
ists (for example, primary care providers) evaluating inflammatory 
conditions—a considerable portion of everyday dermatological consul-
tations. Given limited specialist access in primary care settings where 
most skin conditions are initially evaluated56,57, these findings indicate 
PanDerm’s potential to address dermatological expertise gaps across 
healthcare settings through both its technical capabilities and clinical 
applications. Importantly, across both human–AI collaboration stud-
ies, PanDerm alone performed equivalently to clinicians with PanDerm 
assistance in skin cancer diagnosis and even outperformed human–AI 
collaboration in differential diagnosis, similar to observations in a 
previous study58 showing ‘no significant difference between large 
language model (LLM)-augmented physicians and LLM alone’. This 
phenomenon probably stems from clinicians’ selective incorporation 
of AI recommendations rather than blind adherence, representing a 
balanced clinical implementation in which practitioners maintain their 
diagnostic autonomy while still benefiting from AI support.

The scaling behavior observed in PanDerm’s performance aligns 
with recent foundation model trends20,22,23,59, although achieving this 
in dermatology required addressing unique challenges in medical data 
acquisition and integration. Our analysis revealed two key technical 
insights: first, using CLIP36 as a teacher model achieved superior train-
ing data efficiency (Fig. 1f), outperforming the most representative 
method, DINOv2 (ref. 38)—particularly valuable given healthcare’s 
dataset limitations compared with the typical requirement of DINOv2 
of 142 million images. Second, the masked feature reconstruction 
approach proved more effective at capturing subtle diagnostic features 
than methods such as MAE19. These advantages enabled PanDerm 
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to improve upon both traditional models42,60 and recent generalist 
medical models such as BiomedGPT41. While generalist models advance 
broader biomedical AI, our results suggest that specialty-specific 
foundation models designed with clinical workflows in mind may offer 
more practical solutions for specialties in which multiple imaging 
modalities are crucial.

Despite promising results, we acknowledge several limitations 
in our evaluation scope and methodology. While our validation cov-
ered approximately 200 skin conditions across major categories 
(for example, inflammatory diseases, infections, neoplasms, benign 
growths, pigmented lesions and vascular anomalies), this represents 
only a fraction of known dermatological conditions (over 1,000 diag-
noses) and is smaller than some previous studies (for example, ref. 6 
with 445 conditions), with limited coverage of rare genetic disorders, 

complex systemic diseases and clinical variants. Regarding model 
robustness and fairness, while our benchmark evaluations (Supplemen-
tary Tables 30 and 31) show consistent performance across different 
settings (anatomical locations, age groups, genders and skin tones), 
several constraints exist: the evaluation mainly reflects overall accuracy 
rather than disease-specific analysis, has varying disease coverage 
across anatomical locations and focuses primarily on single imaging 
modalities. A more comprehensive evaluation framework61 integrating 
these aspects will be necessary for further assessing PanDerm’s robust-
ness. Furthermore, recent studies62–64 have highlighted important 
challenges in dermatological AI systems, particularly in human–AI 
interactions. Although our evaluations show stable cross-skin-tone 
performance without explicitly balanced training data (as shown to 
be necessary in a previous study63), comprehensive bias assessment 
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practitioners, nurses and clinical trial assistants. Each reviewed up to 50 of 200 
cases. b, Geographic distribution of readers. c–e, Reader-wise analysis (each 
data point represents one reader, n = 37 readers): comparisons without versus 
with PanDerm support for: top 1 diagnostic assessment score (1–4) (c), top 3 
diagnostic accuracy (d) and diagnostic confidence score (1–4) (e). f, Diagnosis 
change ratio after PanDerm support by specialization group. g,h, Class-wise 
analysis (each data point represents one skin condition class): comparisons 

without versus with PanDerm support by specialization groups for the top 1 
diagnostic assessment score (1–4) (g) and top 3 diagnostic accuracy (h) (n = 128 
classes per group). i,j, Comparisons without versus with PanDerm support by 
disease category for the top 1 diagnostic assessment score (1–4) (i) and the top 
3 diagnostic accuracy (j), stratified by inflammatory (n = 78 classes), neoplastic 
(n = 37 classes) and other (n = 13 classes) conditions. P values in c–e were 
calculated using two-sided paired t-test across readers, while P values in g–j 
were calculated using two-sided paired t-test across classes. In all the boxplots, 
the horizontal lines represent medians and the white dots represent means. 
The upper and lower box limits indicate the 1st and 3rd quartiles, with whiskers 
extending to 1.5 times the interquartile range. Error bars represent 95% CIs.
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requires metrics beyond overall accuracy. Another study64 further 
revealed that equitable stand-alone performance may not translate to 
unbiased human–AI collaboration, which is crucial for clinical deploy-
ment. To address these limitations, future work should develop stand-
ardized protocols for cross-demographic evaluations using more 
comprehensive fairness metrics and investigate biases in human–AI 
collaborative settings. International collaborations such as ISIC55 will 
be crucial for creating representative datasets and establishing robust 
fairness standards.

In conclusion, PanDerm shows the potential of multimodal 
specialty-specific foundation models in addressing the diverse clini-
cal needs across specialized and routine clinical practice in dermatol-
ogy. Through comprehensive pretraining on diverse dermatological 
images and validation across multiple clinical scenarios, the model 
showed robust performance across different use cases. Our devel-
opment approach, combining systematic data curation, advanced 
self-supervised learning and rigorous clinical validation, provides a 
framework for developing medical AI systems that can adapt to vary-
ing levels of clinical expertise and healthcare settings. These findings 
suggest promising directions for developing foundation models in 
other medical specialties in which the integration of diverse imaging 
modalities and complex clinical workflows is crucial for patient care.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
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tributions and competing interests; and statements of data and code 
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Methods
Ethics statement
The MYM study was approved by the Metro South Health Human 
Research Ethics Committee on 21 April 2016 (approval number: HREC/16/
QPAH/125). Ethics approval has also been obtained from the University 
of Queensland Human Research Ethics Committee (approval number: 
2016000554), Queensland University of Technology Human Research 
Ethics Committee (approval number: 1600000515) and QIMR Berg-
hofer (approval number: P2271). The HOP study has received approval 
from the Human Research Ethics Committee (HREC) from Metro South 
Health HREC (HREC/17/QPAH/816) and the University of Queensland 
HREC (2018000074). The ComBineMel dataset is part of the Computer 
Biomarkers Evaluation of Invasive Melanoma (ComBine Mel) study. 
The study was approved by the Alfred Hospital Ethics Committee on  
8 August 2023 (approval number: HREC/98200/Alfred-2023). The study 
follows the National Statement on Ethical Conduct in Human Research 
(2007) protocols. The SDDI2 dataset has been approved by the Ethics 
Review Board of the Medical University of Vienna. The MMT data study 
is part of a research agreement study with Monash eResearch Centre and 
was approved through the Monash University Human Research Ethics 
Committee. The naevus surveillance study images (NSSI) dataset is part 
of the Brisbane Naevus Morphology Study, circa 2009–2014. The study 
followed the Declaration of Helsinki protocols and was approved by the 
Princess Alexandra Hospital human research ethics committee. The  
ACEMID pathology (ACEMID_path) pilot study has received approval 
from the Alfred Hospital Ethics Committee (approval number: 746/23) 
to share data accrued for registered trial ACTRN12619001706167  
(ACEMID) under the Metro South Human Research Committee proto-
col HREC/2019/QMS/57206 and the University of Queensland Human 
Research Ethics Committee protocol 2019003077. The SDDI_Alfred 
study has received approval from the Alfred Hospital Ethics Committee 
(approval number: 198/19) for the use of sequential dermoscopic imag-
ing data. Only de-identified retrospective data were used for research, 
without the active involvement of patients.

Pretraining dataset for developing PanDerm
We curated an extensive pretraining dataset comprising 2,149,706 
unlabeled multimodal skin images to develop PanDerm. This diverse 
dataset encompasses 4 imaging modalities and 11 data sources: 757,890 
(35.3%) TBP tiles, 537,047 (25.4%) dermatopathology tiles, 460,328 
(21.4%) clinical images and 384,441 (17.9%) dermoscopic images. This 
multimodality approach provides a comprehensive representation of 
skin lesions, enabling the model to learn robust features across differ-
ent visual representations.

MYM cohort (TBP). The MYM cohort50 is an in-house dataset studying 
the natural history of melanocytic nevi from 193 Australian partici-
pants recruited from the electoral roll. Three-dimensional (3D) TBP 
was conducted using VECTRA WB360 (Canfield Scientific), capturing 
92 cross-polarized two-dimensional (2D) images with standardized 
lighting to create a 3D avatar. The average lesion tiles per subject was 
approximately 500. The final dataset comprises 405,856 automatically 
detected lesion image tiles ≥2 mm in diameter. Demographic informa-
tion is available in Supplementary Table 32.

HOP cohort (TBP). The HOP study49 is an in-house sequential 
dataset of high-risk melanoma individuals with 314 participants. 
Three-dimensional TBP imaging used the VECTRA WB360 system 
following the same protocol as MYM. Demographic and clinical data 
were collected through standardized questionnaires. More details 
about demographic information are available in Supplementary 
Table 33.

MYM and HOP cohort (dermoscopic). These datasets also contain  
38,110 dermoscopic images from suspicious lesions, providing 

complementary visualization of surface and subsurface structures 
potentially indicative of various skin conditions, particularly melanoma.

MMT dataset. The MMT dataset is an in-house collection amassed 
from over 150 clinics across Australia and New Zealand over a 15-year 
period. This extensive dataset primarily consists of paired polarized 
dermoscopic and clinical images. From this comprehensive collec-
tion, we curated a subset containing 316,399 dermoscopic images and 
310,951 clinical images, providing a rich source of pretraining data for 
training purposes.

ACEMID pathology pilot study. This dataset comprises 54 patients 
from Queensland, Princess Alexandra Hospital (PAH) (48.1%) and  
New South Wales Melanoma Institute Australia (NSW MIA) (51.9%),  
with 57.4% males, aged 19–75 years (mean 53.4). Most patients (81.5%) 
were classified as ‘very high’ risk for melanoma, while others were ‘high’ 
risk (14.8%) or ‘low or average’ risk (1.9%). Lesions were predominantly 
nevi (68.5%, including common, dermal and congenital, and dysplas-
tic, variants), melanomas (24.1%, mostly in situ) and other lesions 
(7.4%). While 66.7% had single lesions examined, others had 2–5 lesions 
per patient. Notable diagnostic variability between pathologists was 
observed. More details are available in Supplementary Table 34.

NSSI. NSSI is an in-house sequential collection of 29,832 dermoscopic 
images from 1,254 individuals in Brisbane, Australia (2009–2014). 
Images were collected using a digital dermatoscope attached to a 
Fotofinder ATBM imaging system (768 × 576 pixels at 96 dpi). The 
study included up to 7 time points per participant at 6-month intervals 
over 3 years. Individual lesions maintained consistent identification 
numbers across visits. See Supplementary Table 35.

Edu1 and Edu2. The Educational source 1 (Edu1) and Educational 
source 2 (Edu2) datasets comprise 81,947 and 67,430 clinical images, 
respectively, from in-house educational resources. They cover inflam-
matory and autoimmune disorders (psoriasis, atopic dermatitis), 
infections (herpes simplex, molluscum contagiosum, tinea corporis), 
pigmentary disorders (melasma, vitiligo), nail conditions (psoriatic nail 
disease, onychomycosis), vascular lesions (port-wine stains, pyogenic 
granulomas), and both benign and malignant tumors (melanoma, basal 
cell carcinoma, squamous cell carcinoma), including rare conditions 
and genetic disorders.

ISIC2024. ISIC2024 (ref. 47) is an open-source TBP-based dataset for 
identifying skin cancers among lesions cropped from 3D total-body 
photographs. We selected a subset containing 352,034 tile images, 
stratified by institutions.

TCGA-SKCM. The Cancer Genome Atlas—skin cutaneous melanoma 
(TCGA-SKCM) dataset65 from The Cancer Genome Atlas project charac-
terized the mutational landscape of human skin cutaneous melanoma. 
It contains 475 slides processed into 377,764 patch images.

UAH89k. The UAH89k dataset66 includes 269 histopathology whole 
slide images from Heidelberg University, MVZ for Histology, Cytology 
and Molecular Diagnostics Trier, and the Institute for Dermatopathol-
ogy, enriching the model’s understanding of skin conditions at the 
microscopic level.

Detail of model architecture and pretraining
PanDerm is a self-supervised learning model designed for the der-
matology field, built upon the success of existing self-supervised 
learning techniques in the natural image domain67. At its core, the 
architecture comprises a ViT-Large visual encoder42, a mask regressor 
and a CLIP-Large36 teacher model. The ViT-Large encoder, with its 24 
transformer blocks and 1,024 dimensional embeddings, processes 
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224 × 224-pixel images, while the CLIP-Large teacher model handles 
slightly smaller 196 × 196-pixel inputs. The training process incorporates 
two primary objectives: masked latent alignment and visible latent 
alignment loss. Initially, the input image undergoes masking, with the 
mask ratio proportional to the encoder’s complexity (50% for ViT-Large). 
The encoder then processes visible patches to produce latent repre-
sentations, while the regressor predicts the latent representations of 
masked patches using these visible latent and mask tokens. The model 
focuses on the encoder–regressor structure without a separate decoder 
component. The regressor assumes the responsibility of predicting the 
latent representations of masked patches, allowing for more efficient 
processing and learning. For target supervision, the unmasked image 
is fed through the CLIP model, generating supervision divided accord-
ing to visible and masked patch locations. The visible latent alignment 
loss is directly applied to the latent representations of visible patches 
computed by the encoder. Concurrently, the masked latent alignment 
loss acts on the latent representations of masked patches predicted by 
the regressor. Both of these loss functions use CLIP latent representa-
tions as their supervision signals. The regressor in PanDerm operates 
similarly to a cross-attention mechanism. It uses learnable mask tokens 
as queries, while the keys and values are derived from the concatenation 
of visible patch representations and the output of previous layers. This 
design allows the regressor to effectively infer the content of masked 
regions based on the context provided by visible areas. Optimization 
primarily focuses on aligning the visible and masked patch predictions 
with their corresponding CLIP latent supervisions. This approach ena-
bles PanDerm to extract rich, semantically meaningful representations 
from dermatological images without relying on explicit labels.

For pretraining, we continued to train the model (initially trained 
on ImageNet-1K) on our dataset of over two million unlabeled multi-
modal skin images, representing diverse dermatological conditions. 
We set the batch size on each graphics processing unit (GPU) to 480, 
with an effective batch size of 1,920. Following masked image modeling 
practices68, we used a 50% mask ratio. To train our model, we used 
AdamW as the optimizer with an initial learning rate of 1.5 × 10−3. We 
apply simple data augmentation such as random resized cropping 
and horizontal flipping during pretraining. We trained our model 
for 500 epochs with a warmup of 20 epochs. The pretraining phase 
used 4 80-GB NVIDIA H100 GPUs and took approximately 5 days and 
7 h. We chose the last epoch checkpoint as our final model weights. 
Please refer to Supplementary Table 36 for more detailed pretraining 
hyperparameter configurations.

Target representations (teacher model) of PanDerm. We tested dif-
ferent teacher models, including CLIP-base, CLIP-large, BiomedCLIP40 
and MONET39 (dermatology-specific CLIP). CLIP-large outperformed 
biomedical-specific and dermatology-specific CLIP models, probably 
owing to the limited data scale of skin images in medical-domain CLIP 
models. Our model with CLIP-large teachers significantly improved 
performance and outperformed CLIP-large itself. See Supplementary 
Table 1 for detailed results.

Linear probing versus fine-tuning for PanDerm. We explored 
whether PanDerm’s features are ready for downstream tasks without 
fine-tuning, similar to DINOv2 (ref. 38) in the natural image domain. 
Our model using simple linear probing performed comparably with 
expensive full-parameter fine-tuning, suggesting that PanDerm’s 
features are already well suited for diverse downstream multimodal 
skin-related tasks without requiring further training. Detailed results 
are in Supplementary Table 2.

Downstream evaluation details
Competing self-supervised learning baselines. For self-supervised 
learning methods comparison, we evaluated DINOv2 (ref. 38), MAE19 
and MILAN37, all using the same ViT-Large backbone. We used the 

recommended hyperparameter configurations for these models and 
continued pretraining from their natural image training weights on 
our pretraining dataset. Subsequently, we fine-tuned these models 
using identical hyperparameter setups to ensure a fair comparison.

Fine-tuning and linear probing. In adapting PanDerm to downstream 
tasks, only the encoder model is used. For most tasks, PanDerm’s fea-
ture quality suffices to achieve competitive performance using simple 
linear probing. This involves applying a linear classifier (that is, logistic 
regression) to the top of extracted features from the PanDerm encoder 
to evaluate its performance on downstream tasks. For more challenging 
tasks requiring higher performance, we opted to fine-tune the Pan-
Derm encoder. The fine-tuning tasks include the three reader studies, 
short-term change detection, skin lesion segmentation, skin cancer 
detection in ISIC2024 and TBP-based risk stratification. For all other 
tasks, we used linear probing. For linear probing, following practices 
recommended by the self-supervised learning community, we fix the ℓ2  
regularization coefficient λ to MC/100, where M is the embedding 
dimension and C is the number of classes, and use the L-BFGS solver 
with a maximum of 1,000 iterations. For fine-tuning, we adhere to 
the BEiT V2 setting68, using cross-entropy loss with a learning rate of 
5 × 10−4. We train models for 50 epochs with a warmup of 10 epochs. The 
model showing the best performance on the validation set is selected 
as the final model. For detailed hyperparameter configurations, please 
refer to Supplementary Table 37. In the following sections, we describe 
tasks with more specific methodological details.

Sequential data preprocessing for lesion change detection. Our 
proposed sequential data-preprocessing method consists of dark 
corner removal, skin inpainting, hair removal, image registration and 
lesion segmentation. For the first two steps, we follow the approach 
outlined in a previous study69. Given an image with or without dark cor-
ner artifacts, we convert it to grayscale and extract the contour using 
the OpenCV70 binary threshold function (threshold = 100) with the 
findContours function (RETR_TREE mode and CHAIN_APPROX_SIMPLE 
method). We identify the largest contour by calculating the area of all 
existing contours, capture a circular area using the minEnclosingCircle 
function, scale to 80% of the original radius and inpaint using the Telea 
algorithm (radius = 10). For hair removal, we convert to grayscale, apply 
a black hat morphological operation with a 17 × 17 structuring element, 
the threshold to create a binary mask, and inpaint. For image registra-
tion, we implement the AKAZE71 feature-based approach: detecting key 
points (descriptor size = 0, threshold = 9 × 10−5, octaves = 4), match-
ing using the Brute Force matcher with Hamming distance, refining 
with RANSAC to estimate a EuclideanTransform model and warping 
using skimage.transform.warp with reflection padding and linear 
interpolation.

Siamese network for change detection. Similar to a previous study45, 
we use a simple Siamese network architecture for change detection, 
in which two identical visual encoders with shared weights from our 
foundation model process a pair of sequential lesion images captured 
over a short time frame. Each encoder extracts features from its respec-
tive image. These learned features are then concatenated and passed 
through two fully connected layers, followed by a softmax layer for 
final classification. For training this Siamese network in our binary 
change detection task, we use a contrastive loss function. This loss 
is particularly well suited for Siamese networks as it helps the model 
learn to distinguish between pairs of images that have changed and 
those that have not. The contrastive loss encourages the network to 
minimize the distance between feature representations of image pairs 
with no significant changes while maximizing the distance for pairs that 
show meaningful changes. This approach allows the network to learn 
a similarity metric between image pairs, rather than simply classifying 
individual images.
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Melanoma metastasis prediction and survival analysis. We use a 
linear probing classifier on our foundation model to predict mela-
noma metastasis using dermoscopic images from the private Com-
BineMel dataset. Our evaluation encompasses two scenarios: binary 
metastasis prediction and multi-class metastasis prediction. In the 
binary classification, we aim to differentiate between the presence 
of any metastasis (including local, satellite and in-transit metastases, 
lymph node recurrence, and distant metastasis) and its absence. The 
multi-class prediction presents a more complex challenge, categoriz-
ing cases into three groups: control (no metastasis); local, satellite 
and in-transit metastases; and distant metastasis. To enhance the 
robustness and mitigate potential data selection bias, we perform five 
iterations of dataset splitting into training and testing sets, stratified 
by melanoma stage. The model is trained using these fivefold data. We 
linear probed PanDerm with the setting mentioned above. We then 
generated out-of-fold predictions for all lesions and compare these 
with the ground truth for performance evaluation.

Subsequently, we conduct a multivariate Cox regression analysis, 
incorporating the metastasis prediction score and clinical variables 
(age, sex, Breslow thickness, ulceration, dermal mitosis, melanoma 
subtype and lesion location) to predict the RFI. This analysis focuses 
on earlier stages of melanoma (stages I–II). We visualize the relative 
contribution of individual variables to prognosis prediction using a 
forest plot. To analyze the correlation between variables and RFI, we 
use the Kaplan–Meier method. Patients are stratified into low-risk and 
high-risk groups based on their binary metastasis prediction scores 
(median value). The log-rank test is used to assess the classifier’s ability 
to predict survival. To evaluate the predictive accuracy at various time 
points, we generate time-dependent receiver operating characteristic 
curves and calculate AUCs at 3 years, 5 years and 7 years.

Melanoma screening using TBP. The melanoma screening algorithm 
is designed to identify high-risk lesions among whole-body images, aid-
ing clinicians in efficiently detecting potential malignancies. Lesions 
flagged as high risk undergo further triage and dermoscopic exami-
nation. The screening model integrates three modules: a risk predic-
tion head, a UD detection head and a machine learning module, using 
both TBP image data (image tiles) and metadata for comprehensive 
predictions. We first fine-tune our foundation model, equipped with 
the risk prediction head, using TBP image tiles to classify lesions as 
high risk or low risk. All lesion images are resized to 224 × 224 pixels 
and subjected to data augmentation, including color and geometric 
transformations. The risk prediction head, comprising a single linear 
layer, identifies lesions as high risk if subjected to dermoscopy exami-
nation and low risk otherwise. The UD detection head leverages the ‘UD 
sign’, an effective diagnostic strategy that compares all lesions from the 
same patient to identify outliers. This approach capitalizes on lesion 
contextual information. We use the fine-tuned foundation model to 
extract deep learning features, which are then processed by the UD 
detection head. This module calculates the distance between each 
lesion’s features and the average features of all lesions from the same 
patient, using the interquartile range method to select outlier lesions. 
The machine learning module, an extra tree classifier, is trained using 
TBP metadata, which include 32 measurements for each lesion from 
the 3D TPB machine. This module directly predicts malignancy based 
on pathology labels. The final screening result combines predictions 
from all three modules. A lesion is flagged as suggestive of malignancy 
if any module yields a positive prediction. We evaluate the screening 
performance at both the lesion and patient levels to ensure compre-
hensive accuracy assessment.

Weakly supervised slide classification. Weakly supervised slide 
classification tasks are approached using the established two-stage 
multiple instance learning framework: (1) extracting instance-level 
features from tissue regions within the whole slide image (WSI) and 

(2) developing an order-invariant aggregation method to consolidate 
patch-level data into slide-level representation. For preprocessing, we 
use the CLAM toolbox72 for tissue segmentation, partitioning regions 
into 256 × 256 nonoverlapping sections at ×20 magnification, then 
resizing to 224 × 224 and normalizing using ImageNet parameters. 
To evaluate pretrained encoders, we implement the attention-based 
multiple instance learning algorithm73 with consistent configurations. 
Our implementation features a two-tier gated ABMIL structure with 
an initial FC layer mapping to 512-dimensional space, followed by 
intermediate layers with 384 hidden units. We incorporate dropout 
regularization (rates 0.10 and 0.25), use the AdamW optimizer74 with 
a cosine learning rate schedule (initial rate 1 × 10−4, weight decay 
1 × 10−5), and use cross-entropy loss. Training runs for 20 epochs with 
early stopping based on validation loss. We ensure robust evaluation 
through fivefold cross-validation, stratifying by both case and label 
attributes.

Skin lesion segmentation. For skin lesion segmentation, we use a 
conventional segmentation paradigm, using a network encoder con-
nected to a segmentation decoder and head. Our proposed PanDerm 
serves as the encoder in this setup. We benchmark PanDerm against 
three established models: ViT-Large42, autoSMIM33 and BATFormer75. 
Both ViT and PanDerm use an UperNet decoder, following the official 
ViT implementation. For autoSMIM and BATFormer, we adhere to 
their official repository settings. ViT-Large and autoSMIM encod-
ers are initialized with ImageNet pretrained weights. To ensure a fair 
comparison, all images are resized to 224 × 224. We apply online data 
augmentation, including color jittering, random rotation and random 
flipping, to mitigate overfitting. The training uses an AdamW optimizer 
with an initial learning rate of 5 × 10−4 and a weight decay of 0.01, with 
the learning rate decaying according to a cosine schedule. The models 
are trained for 100 epochs, and we save the model that achieves the 
best evaluation metrics on the validation set.

Early melanoma detection (reader study 1). We fine-tuned our foun-
dation model on the private SDDI–Alfred dataset54 using a tenfold 
cross-validation approach. We used cross-entropy loss with a learn-
ing rate of 5 × 10−4. We train models for 50 epochs with a warmup of 
10 epochs. The model showing the best AUROC on the validation set 
is selected as the final model. We then used an out-of-fold prediction 
approach to generate melanoma predictions for all sequential images. 
For each image sequence, we recorded the time point at which the 
model first made a correct diagnosis of melanoma; otherwise, the 
model was considered to have failed in detecting the melanoma. While 
biopsy serves as our reference standard, we aimed to explore the algo-
rithm’s potential to detect early signs of melanoma progression. Our 
study focused on identifying suspicious changes in sequential images 
before clinical diagnosis, with the goal of enabling earlier intervention 
when melanomas are most treatable. For the human evaluation, 12 
clinicians—seven dermatologists with over 5 years of experience and 
five dermatology residents with less than 5 years of experience—were 
invited to assess the serial dermoscopic data. The images were pre-
sented to the reviewers using Qualtrics (Provo), with the reviewers 
blinded to the true diagnoses. For each case, information such as the 
patient’s age, sex, lesion location and date of imaging was provided. 
Initially, only the first dermoscopic image in the sequence was shown, 
and reviewers were asked to classify the lesion as either benign or 
malignant. As they progressed through the sequence, side-by-side 
image comparisons were made available to assess changes over time. 
Once a diagnosis was submitted, it could not be revised. To mitigate 
bias, we included ten single time-point melanoma images, preventing 
reviewers from assuming that the first image in a series was benign. We 
then compared the diagnostic performance of the clinicians with our 
model, focusing on the time point at which a malignant diagnosis was 
first made by either the clinicians or the algorithm.
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Human–AI collaboration for skin cancer diagnosis. The reader 
study was conducted using DermaChallenge, a web-based platform 
developed and hosted by the Medical University of Vienna for online 
education on dermatoscopy, as described in previous studies76,77. To 
ensure proper authentication and data management, readers were 
required to register with a unique username, valid email address and 
password. Active users on the platform, who previously actively agreed 
to be contacted, were recruited via a single email. Before commencing 
the study phase, all users had to finish three introduction levels to be 
familiarized with the platforms’ user interface and image types. The 
number of correct answers in the first iteration of these levels, normal-
ized against the mean score of the entire DermaChallenge platform 
user base, served as a score of experience. Users were grouped into 
‘low’ (n = 11), ‘medium’ (n = 21) and ‘high’ (n = 9) experience based on 
quantiles with cuts at 0.25 and 0.75 probability (R stats::quantile() func-
tion). Within the study level, users were shown batches of 10 images, 
randomly selected from a pool of 1,511 images, that is, the ISIC 2018 Task 
3 test set, with a predefined diagnosis distribution (actinic keratosis 
and intraepidermal carcinoma (AKIEC): 1, basal cell cacinoma (BCC): 1, 
benign keratinocytic lesion (BKL): 1, dermatofibroma (DF): 1, vascular 
lesion (VASC): 1, melanoma (MEL): 2, melanocytic nevus (NV): 3). For 
each image, a user had to choose one diagnosis out of seven options, 
and subsequently again after assistance from our foundation model, 
presented as multi-class probabilities visualized as bars and numbers 
for each class. Readers had the flexibility to complete multiple survey 
rounds with different image batches at their discretion; incompletely 
answered batches were omitted. The study was conducted online from 
20 August to 12 September 2024, during which we collected data from 
41 raters. Our foundation model for decision support used a weighted 
random sampler strategy, following the approach from76 but exclud-
ing test-time augmentation. The model showed robust performance, 
achieving an 80.4% mean (macro-averaged) recall, with notably high 
recall rates for critical skin lesions: 87.2% for melanoma and 86.0% 
for BCC.

Human–AI collaboration for 128 skin condition diagnoses. The 
reader study was conducted using a web-based platform developed 
for online dermatological assessment. A total of 37 healthcare profes-
sionals participated in the study, categorized into two groups based on 
specialization: a dermatology group (n = 20) comprising 9 dermatol-
ogy specialists and 11 specialty trainees, and a generalist group (n = 17) 
including 7 GPs, 7 general medicine practitioners and 3 other health-
care professionals (nursing, clinical trial assistants) who manage skin 
conditions within their broader practice scope. This grouping strat-
egy reflects the real-world clinical setting in which nondermatologist 
healthcare professionals routinely perform initial skin assessments. 
The diverse range of 128 skin conditions enabled the evaluation of 
diagnostic performance between dermatologically trained profession-
als and those with general medical training. Readers were presented 
with clinical images and asked to provide their assessment through 
a structured questionnaire. Each participant rated image quality on 
a 5-point scale (from ‘not at all’ to ‘completely’ assessable), provided 
a primary diagnosis through free-text entry and optionally listed two 
differential diagnoses ranked by likelihood. Diagnostic confidence 
was recorded on a 4-point scale (1, not at all confident; 2, somewhat 
confident; 3, confident; 4, highly confident). Following their initial 
assessment, readers were shown PanDerm’s top 3 predicted diagno-
ses and given the opportunity to maintain or modify their original 
diagnosis and differential diagnoses, followed by a reassessment of 
their confidence using the same 4-point scale. The study collected 
1,342 responses between 1 July and 2 October 2025. Before the evalu-
ation, four experienced dermatologists collaboratively developed a 
standard ontology to systematically categorize the 128 skin conditions 
and facilitate expert evaluation (Extended Data Fig. 8). The evaluation 
process involved multiple expert assessors who independently scored 

diagnostic accuracy using a 4-point scale: 4, direct match with the 
predefined term in the ontology; 3, match within the same diagnos-
tic category in the ontology; 2, inconsequential misdiagnosis; and 1, 
significant mismatch, potentially dangerous misdiagnosis. To ensure 
robust assessment, each case was evaluated by three assessors, with 
cases showing significant scoring discordance (differences between 3/4 
and 1/2) reviewed in consensus meetings to establish final scores. For 
the top 3 accuracy evaluation, both human readers and AI assistance 
were evaluated based on whether the correct diagnosis appeared within 
their top 3 diagnostic choices.

Evaluation metrics. For multi-class tasks, we primarily use a weighted 
F1 score, which averages class-specific F1 scores (harmonic means of 
precision and recall) weighted by class size. It addresses class imbal-
ance in multi-class scenarios. For binary classification, we primarily use 
AUROC, measuring the model’s ability to distinguish between classes 
across all classification thresholds. An AUROC of 1.0 indicates perfect 
classification, while 0.5 suggests random guessing. This metric is par-
ticularly useful for imbalanced datasets and when we need to evaluate 
trade-offs between true-positive and false-positive rates. For the three 
reader studies, we report accuracy (top 1 or top 3). In skin lesion seg-
mentation, we use the Dice similarity coefficient and Jaccard index to 
assess segmentation quality. For TBP-based melanoma screening, we 
primarily report the sensitivity (recall) in malignant lesions, focusing 
on the model’s ability to correctly identify malignant cases.

Statistical analysis. For skin tumor patch classification, melanoma 
slide classification, reader studies, metastasis prediction and skin 
lesion segmentation, we conduct k-fold cross-validation owing to 
either a relatively small sample size or following conventional prac-
tice. We compute the mean and standard deviation of performance 
across the folds, then calculate the standard error by dividing the 
standard deviation by the square root of the number of folds. The 
95% CI is derived using 1.96 times the standard error. To assess sta-
tistical significance, we conduct two-sided t-tests comparing Pan-
Derm’s performance against the baseline model for each task. For 
the remaining datasets, we use nonparametric bootstrapping with 
1,000 replicates to estimate 95% CIs for each model’s performance. 
To compare models, we implement pairwise permutation tests, con-
ducting 1,000 permutations per pair and recalculating performance 
metrics after each permutation. We derive two-sided P values to 
evaluate the null hypothesis that paired observations stem from 
identical distributions. In addition, we perform t-tests to assess the 
statistical significance of inter-model performance variations. Our 
null hypothesis posits no discernible difference between PanDerm’s 
performance and that of its competitors. P < 0.05 was regarded as 
statistically significant.

Skin cancer and general skin condition classification datasets
HAM10000 (7 classes). The HAM10000 (ref. 34) dataset contains 
10,015 dermoscopic images across 7 classes: actinic keratoses, basal 
cell carcinoma, benign keratosis, dermatofibroma, melanocytic nevi, 
melanoma and vascular lesions. It is stratified into 60% training, 20% 
validation and 20% test sets. For human–AI collaboration, we used the 
official dataset. All other experiments used the clean version from a 
previous study78, which prevents data leakage by ensuring that lesions 
from the same patient are not split across sets.

BCN20000 (9 classes). The BCN20000 (ref. 79) dataset comprises 
12,413 dermoscopic images in 9 categories: nevus, melanoma, basal 
cell carcinoma, seborrheic keratosis, actinic keratosis, solar lentigo, 
squamous cell carcinoma, dermatofibroma and vascular lesions, 
including lesions in hard-to-diagnose locations. It is similarly strati-
fied (60–20–20 split). We used the clean version of BCN20000, which, 
like the HAM10000, addresses data leakage issues.
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MSKCC (2 classes). The Memorial Sloan Kettering Cancer Center 
(MSKCC)55 dataset is curated from the MSKCC data from the ISIC 
archive55, containing 8,984 dermoscopic images with melanoma and 
other classes.

HIBA (2 classes). The HIBA55 dataset is curated from the HIBA data 
from the ISIC archive55, containing 1,635 dermoscopic images with 
melanoma and other classes.

PAD-UFES-20 (6 classes). The PAD-UFES-20 (ref. 43) dataset from 
Brazil contains 2,298 close-up clinical images with 6 classes, including 
actinic keratosis, basal cell carcinoma of the skin, malignant melanoma, 
melanocytic nevus of the skin, squamous cell carcinoma and sebor-
rheic keratosis.

DDI (2 classes). We grouped the classes of the diverse dermatology 
images (DDI) dataset63 into melanoma and others. The dataset contains 
647 clinical images from the United States.

Derm7pt (2 classes). Derm_D is a subset of Derm7pt (ref. 80), contain-
ing 839 dermoscopic images, and Derm_C contains 839 clinical images 
with melanoma and other classes.

ISIC2024 (2 classes). ISIC2024 (ref. 47) is a multicenter dataset with 
skin lesion crops from TBP. We chose holdout data with 49,025 crop 
images with three institutions (FNQH Cairns, Alfred Hospital, Mela-
noma Institute Australia) as the evaluation dataset.

PH2 (3 classes). PH2 (ref. 81) is a clinical image dataset from Portugal 
with 200 images and 3 classes. We reorganize it to a binary melanoma 
detection task.

Med-Node (2 classes). The Med-Node82 dataset contains 170 clinical 
images. We reorganize it to a binary melanoma detection task.

DermNet (23 classes). DermNet44 contains 19,559 clinical images; this 
dataset consists of images of 23 types of skin diseases and captures 
common clinical presentations including inflammatory conditions 
(eczema, psoriasis), infections (bacterial, viral, fungal) and neoplastic 
diseases.

Fitzpatrick17K (114 classes). The Fitzpatrick17K (ref. 62) dataset 
comprises 16,577 clinical images annotated with both dermatologi-
cal diagnoses and Fitzpatrick skin types (I–VI). It encompasses 114 
distinct conditions (minimum of 53 images per condition) spanning 
major dermatological categories: inflammatory dermatoses (psoriasis, 
lichen planus, various eczematous conditions), cutaneous malignan-
cies (melanoma, morpheiform and solid-cystic variants of BCC, SCC), 
papulosquamous disorders (pityriasis rosea, pityriasis rubra pilaris), 
autoimmune conditions (lupus erythematosus, bullous diseases), 
benign neoplasms (seborrheic keratosis, dermatofibroma) and various 
other clinically significant entities (acanthosis nigricans, granuloma 
annulare, necrobiosis lipoidica).

MMT-09 (9 classes). The dataset is an in-house clinical dataset with 
9 skin condition classes, including benign keratinocytic, malignant 
keratinocytic, melanocytic, inflammatory conditions and benign 
tumors, vascular lesion, basal cell carcinoma, malignant keratinocytic, 
melanoma and squamous cell carcinoma. We chose 38,476 images as 
our evaluation dataset.

MMT-74 (74 classes). The MMT-74 dataset (Supplementary Table 38) 
is a comprehensive in-house clinical collection comprising 38,476 
dermatological images across 74 detailed skin condition classes, build-
ing upon and refining the broader 9-class structure of MMT-09. This 

structured dataset encompasses diverse dermatological conditions, 
including detailed classifications of basal cell carcinoma variants 
(nodular, pigmented, superficial and recurrent), melanocytic lesions 
with specific pattern recognition (such as acral patterns and various 
nevus types), inflammatory disorders (dermatitis, psoriasis), benign 
proliferations (including seborrheic keratosis variants) and vascu-
lar lesions (angiomas, telangiectasias). The dataset was specifically 
designed to evaluate deep learning models’ performance across a 
diverse and clinically relevant range of skin conditions, with categories 
spanning inflammatory, infective, benign proliferations, melanocytic 
and eczema classifications.

SD-128 (128 classes). This dataset encompasses 5,619 clinical images 
covering 128 dermatological conditions spanning the complete spec-
trum of clinical practice. The dataset provides substantial coverage 
of inflammatory dermatoses, ranging from common presentations 
(such as psoriasis and atopic dermatitis) to less common entities 
(such as leukocytoclastic vasculitis). It includes diverse infectious 
diseases of bacterial, viral and fungal etiologies, as well as a compre-
hensive range of proliferative lesions from benign nevi to malignant 
melanomas. The collection also extends to appendageal disorders, 
physical-trauma-related changes, nail disorders and hair-loss condi-
tions. This extensive compilation represents both frequently encoun-
tered conditions in everyday practice and challenging rare cases, 
providing a robust resource for clinical diagnostic support. This dataset 
contains 5,619 clinical images encompassing diverse dermatological 
conditions commonly encountered in clinical practice. The dataset 
provides substantial coverage of inflammatory conditions from com-
mon presentations (psoriasis, atopic dermatitis) to less common enti-
ties (leukocytoclastic vasculitis); various infectious diseases spanning 
bacterial, viral and fungal etiologies; and a range of proliferative lesions 
from benign nevi to malignant melanomas as well as appendageal dis-
orders and physical-trauma-related changes. We used 10% of the data 
stratified by disease labels for benchmark evaluation. In addition, we 
selected 200 images stratified by disease classes for our reader study.

Skin tumor patch classification (PATCH16) (16 classes). The skin 
tumor patch classification task66 consists of tissue patches of 378 
histopathology WSIs from the archive of the Institute of Pathology, 
Heidelberg University, the MVZ for Histology, Cytology and Molecular 
Diagnostics Trier and the Institute for Dermatopathology Hannover 
for classification of 16 categories including 4 tumor types and 12 nor-
mal tissue structures. We obtained a total of 129,364 image patches 
of 100 × 100 μm (395 × 395) size. The dataset was stratified by label, 
with 55% allocated for training, 15% for validation and 30% for testing.

Melanoma slide classification (WSI) (2 classes). The melanoma slide 
classification task83 from the National Cancer Institute’s Clinical Prot-
eomic Tumor Analysis Consortium Cutaneous Melanoma (CPTAC-CM) 
cohort consists of histopathology WSIs for cancer detection. After 
selecting labeled WSIs, we obtained 302 slides (71 normal, 231 tumor). 
For training and evaluation, we used a fivefold cross-validation strategy 
with label-stratified splits to maintain class balance.

Early melanoma detection based on SDDI–Alfred (2 classes). The 
dataset (Supplementary Table 39) consists of 179 serial dermoscopic 
imaging sequences from 122 patients, totaling 730 dermoscopic 
images. The patients were recruited from a private specialist derma-
tology clinic, with follow-up periods ranging from January 2007 to 
December 2019. The study population showed distinct characteris-
tics between melanoma and benign groups: patients with melanoma 
had a mean age of 56.6 years (s.d. = 11.8) compared with 49.6 years 
(s.d. = 11.4) in the benign group, with slightly different gender distri-
butions (53.9% male in melanoma versus 40.0% male in benign cases). 
Both melanoma and benign lesions that underwent short- or long-term 
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SDDI at least once before biopsy were included. The dataset is well 
balanced, with 90 benign lesions and 89 malignant lesions. Of the 89 
melanomas, 34 (38.2%) were invasive, with a mean Breslow thickness of 
0.5 mm, while 55 (61.8%) were in situ. The melanoma subtypes included 
invasive superficial spreading melanoma (SSM) (36.0%), in situ SSM 
(31.4%), unspecified in situ (18.0%), lentigo maligna (12.3%) and inva-
sive lentigo maligna melanoma (LMM) (2.2%). The benign lesions were 
predominantly dysplastic nevi (40.0%), followed by compound nevi 
(27.8%), junctional nevi (18.9%) and intradermal nevi (8.9%). Anatomi-
cally, lesions were most commonly located on the lower limb (29.2% 
melanoma, 26.7% benign) and back (23.5% melanoma, 25.6% benign). 
All lesions were monitored via digital dermoscopy, excised owing to 
clinical concerns and confirmed by pathological examination. The 
number of images per sequence varied from 1 to 12, with an average of 
approximately 4 images per sequence.

Longitudinal and melanoma metastasis datasets
Short-term lesion change detection based on SDDI1 (2 classes). 
The SDDI1 (ref. 55) dataset is sourced from the ‘Repeated Dermoscopic 
Images of Melanocytic Lesions’ by University Hospital Basel, available 
in the ISIC archive. It comprises 116 sequential lesions, each with a 
sequence length of 5, from 66 patients. The dataset is categorized into 
two classes for lesion change detection.

Lesion change detection based on SDDI2 (2 classes). SDDI2 is an 
in-house dataset from the Medical University of Vienna. It contains 229 
sequential dermoscopic images with a sequence length of 2. The data-
set includes both binary change labels and more fine-grained malignant 
change labels. This dataset is also used for short-term lesion-change 
detection.

Melanoma metastasis and survival prediction (2 or 3 classes). 
The ComBineMel dataset encompasses 680 dermoscopic images of 
invasive melanoma from 370 patients recruited across 10 hospital 
sites in multiple countries, including Australia and 5 European nations. 
For large melanomas, multiple images were captured to ensure com-
prehensive coverage of the entire lesion area. The study population is 
included in Supplementary Table 40. Regarding disease staging, the 
majority of cases were classified as stage I (70.5%), followed by stage III 
(16.5%), stage II (12.2%) and stage IV (0.8%). In terms of T classification, 
T1a was the most common (59.2%), followed by T2a (18.6%) and T4b 
(13.2%). Sentinel lymph node biopsy was not performed in most cases 
(71.6%), with 10.8% positive and 17.6% negative results among those 
tested. For nodal status, N1 disease was the most common (10.8%), 
followed by N2 (3.8%) and N3 (1.8%). Regarding metastasis status, 248 
(67.0%) of cases showed no metastasis, while 66 (17.8%) presented 
with metastasis at the time of diagnosis. In addition, 56 (15.1%) of cases 
developed metastasis during the follow-up period.

Skin lesion segmentation based on ISIC2018 and HAM10000. The 
skin lesion segmentation task is evaluated using two publicly available 
datasets. The ISIC2018 dataset52 comprises 3,694 dermoscopic images 
with 2,594 images for training, 100 for validation and 1,000 for testing. 
We follow this official dataset split for our experiments. The HAM10000 
dataset34 includes 10,015 dermoscopic images, each with correspond-
ing binary segmentation labels. A randomized selection approach is 
adopted, with 64% of the images used for training, 16% for validation 
and the remaining 20% for testing.

3D TBP datasets
This dataset comprises 3D TBP images captured using the VECTRA 
WB360 system (Canfield Scientific). The system uses 92 cameras 
to simultaneously capture cross-polarized 2D images with stand-
ardized lighting within seconds, which are then merged to create 
a high-fidelity 3D avatar of each patient’s entire skin surface. From 

these 3D avatars, individual lesion tiles were exported for further 
analysis. Unlike stand-alone clinical photographs, TBP represents a 
higher-order imaging modality in which 2D tiles are systematically 
derived from 3D reconstructions, maintaining spatial relationships. 
The standardized acquisition with calibrated lighting enables the 
capture of the entire body surface with overlapping views, providing 
consistent anatomical landmarks and contextual information for 
comprehensive assessment, including skin phenotype patterns, lesion 
measurements and ‘UD’ sign application. The images undergo calibra-
tion and stitching, resulting in standardized 2D tiles with consistent 
quality across all body regions.

Photodamage risk assessment datasets (3 classes). This in-house 
dataset84 contains image tiles (693 × 693 pixels) created from 92 raw 2D 
photos, each representing approximately 10 cm2 of cutaneous surface. 
Tiles with <33% skin surface were excluded using pixel color analysis. 
Manual review removed out-of-focus images, tiles with multiple body 
sites or identifying features. The final dataset comprises 5,022 image 
tiles from MYM50 and HOP49 studies, labeled as low, moderate or severe 
photodamage risk labeled primarily by dermatology students.

Nevus counting datasets (2 classes). This dataset, derived from 
the in-house MYM50 study, contains 28,227 lesion tiles annotated as 
nevus or nonnevus. Three expert physicians independently labeled 
lesions on-screen, with consensus determined by ≥2 clinicians’ agree-
ment. A senior dermatologist manually identified nevi in-clinic using a 
dermatoscope, serving as the gold standard for the test set. To ensure 
consistency, lesions under underwear, on the scalp or on foot soles 
were excluded, and only lesions ≥2 mm were considered. A minimum 
1-month interval was maintained between on-screen and in-clinic 
labeling sessions.

Risk prediction and TBP screening datasets (2 classes). This dataset 
comprises 2,038 TBP scans from 480 patients, collected from the MYM 
and HOP studies. The raw TBP scans include nevi images and a variety 
of nonrelevant images such as normal skin, scars and freckles. To focus 
only on nevi, we applied filtering parameters based on built-in Vectra 
data settings: majorAxisMM ≥ 2, deltaLBnorm ≥ 4.5, out_of_bounds_
fraction ≤ 0.25, dnn_lesion_confidence ≥ 50 and nevi_confidence > 80. 
This process resulted in 196,933 lesion image tiles. We stratified the 
data by the patient for training, validation and testing: 360 patients 
for training (146,752 images), 40 patients for validation (19,483 images) 
and 80 patients for testing (30,698 images, including 28 malignant 
lesions). Of the total dataset, 216 images represent malignant lesions, 
with 40 confirmed melanoma cases.

Measurements in TBP. Alongside the image tiles, Vectra provides a 
range of measurements for each lesion, mainly including size, color 
and shape. Our TBP screening model incorporates 32 such measure-
ments: ‘A’, ‘Aext’, ‘B’, ‘Bext’, ‘C’, ‘Cext’, ‘H’, ‘Hext’, ‘L’, ‘Lext’, ‘areaMM2’, 
‘area_perim_ratio’, ‘color_std_mean’, ‘deltaA’, ‘deltaB’, ‘deltaL’, ‘deltaLB’, 
‘deltaLBnorm’, ‘dnn_lesion_confidence’, ‘eccentricity’, ‘location_simple’, 
‘majorAxisMM’, ‘minorAxisMM’, ‘nevi_confidence’, ‘norm_border’, 
‘norm_color’, ‘perimeterMM’, ‘radial_color_std_max’, ‘stdL’, ‘stdLExt’, 
‘symm_2axis’ and ‘symm_2axis_angle’.

Computing hardware and software
Scripts for data collection and processing were written in Python (ver-
sion 3.9.19) using the libraries Pandas (version 2.2.2), Numpy (version 
1.26.4) and Pillow (version 10.3.0). For self-supervised pretraining, 
we used 4 × 80 GB NVIDIA H100 GPUs configured for multi-GPU 
single-node training using DistributedDataParallel (DDP) as imple-
mented by Python (v.3.9.13), PyTorch (v.2.2.1, CUDA 11.8) and Torchvi-
sion (v.0.17.1). The CAE-v2 code is used as the codebase to develop 
our foundation model, which can be found in its official repository 
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(https://github.com/Atten4Vis/CAE). For downstream task evaluation, 
all experiments were conducted on 4 × 49 GB NVIDIA 6000 Ada GPUs. 
We used Python (v.3.9.19), PyTorch (v.2.2.2, CUDA 11.8) and Torchvision 
(v.0.17.2) for fine-tuning tasks, and Python (v.3.10.14), PyTorch (v.2.2.2, 
CUDA 11.8) and Torchvision (v.0.17.2) for linear probing tasks. We used 
Scikit-learn (v1.2.1) for logistic regression in the linear probing setting. 
Implementation of other comparative pretrained models was modified 
based on the official configuration in their respective repositories: MAE 
(https://github.com/facebookresearch/mae), SL_ImageNet (https://
huggingface.co/timm/vit_large_patch16_224.orig_in21k), DINOv2 
(https://github.com/facebookresearch/dinov2), SwAVDerm (https://
github.com/shenyue-98/SwAVDerm), autoSMIM (https://github.
com/Wzhjerry/autoSMIM), BATFormer (https://github.com/xianlin7/
BATFormer), MedSAM (https://github.com/bowang-lab/MedSAM), 
ResNet50 (https://pytorch.org/vision/main/models/generated/torch-
vision.models.resnet50.html), MILAN (https://github.com/zejiangh/
MILAN), CLIP (https://github.com/openai/CLIP), BiomedCLIP (https://
huggingface.co/microsoft/BiomedCLIP-PubMedBERT_256-vit_base_
patch16_224) and MONET (https://github.com/suinleelab/MONET/
tree/main).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Most datasets used in this study are publicly available. These data-
sets used for skin lesion diagnosis and segmentation tasks can be 
accessed through various repositories. The ISIC archive (https://
www.isic-archive.com/) hosts several datasets, including MSKCC and 
HIBA. Other widely used benchmark datasets are available through 
their respective portals: BCN20000 (https://figshare.com/articles/
journal_contribution/BCN20000_Dermoscopic_Lesions_in_the_
Wild/24140028/1), PAD-UFES-20 (https://www.kaggle.com/datasets/
mahdavi1202/skin-cancer), DDI (https://ddi-dataset.github.io/index.
html), Derm7pt (https://derm.cs.sfu.ca/Welcome.html), ISIC2024 
(https://www.kaggle.com/competitions/isic-2024-challenge), 
Med-Node (https://www.kaggle.com/datasets/prabhavsanga/
med-node), DermNet (https://www.kaggle.com/datasets/shub-
hamgoel27/dermnet), WSI (https://portal.gdc.cancer.gov/projects/
TCGA-SKCM), PATCH16 (https://heidata.uni-heidelberg.de/dataset.
xhtml?persistentId=doi:10.11588/data/7QCR8S), ISIC2018_task1 and 
HAM10000 (https://challenge.isic-archive.com/data/), SDDI1 (https://
api.isic-archive.com/collections/328/), PH2 (https://www.fc.up.pt/
addi/ph2%20database.html), SD-128 (https://huggingface.co/datasets/
resyhgerwshshgdfghsdfgh/SD-198) and UAH89k (https://heidata.
uni-heidelberg.de/404.xhtml;jsessionid=6a9c0981ef8e0874c5dca6
e1600a). Access to in-house datasets is restricted due to patient pri-
vacy considerations. These include MMT for dermoscopic and clinical 
image pretraining and downstream multi-skin condition classification, 
NSSI for sequential dermoscopic image pretraining, ACEMID_path 
for dermatopathology pretraining, Edu1 and Edu2 for clinical image 
pretraining, SDDI2 for lesion change detection, SDDI_Alfred for reader 
study 1 (early melanoma detection) and the TBP data from MYM and 
HOP studies for all TBP-based pretraining and evaluation. Researchers 
interested in accessing these datasets should direct their requests to 
the corresponding author. All requests will receive a response within 
2 weeks of submission. Requests will be evaluated according to institu-
tional and departmental policies to ensure compliance with intellectual 
property rights and patient privacy obligations. The availability of 
these data may be subject to additional restrictions or requirements.

Code availability
We have made the encoder code and weights available for downstream 
task applications. They are available via GitHub at https://github.com/

SiyuanYan1/PanDerm. We have documented all experiments in detail in 
Methods to enable independent replication. To facilitate the broader 
use of our model, we have provided tutorial Jupyter notebooks and 
downstream evaluation code suitable for a wide scientific audience. 
These resources have been made available to ensure transparency and 
to promote further research in this field.
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Extended Data Fig. 1 | Performance of PanDerm versus other pretrained 
models on 10 pigmented skin lesion datasets across multiple centers and 
modalities. a. Performances are measured by weighted F1 (W F1).  
b. Performances are measured by AUROC. c. Performances are measured by 
AUPR. d. Perfor- mances are measured by BACC. n: data size, c: class number. 

Dashed lines show the average performance of each model across different 
datasets. Estimates were computed using nonparametric bootstrapping with 
1000 bootstrap replicates. P-values calculated using a two-sided t-test. Error bar, 
95% CIs; bar centers, means.
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Extended Data Fig. 2 | Label efficiency generalization results on additional 
tasks. a. Label efficiency analysis for photodamage risk assessment using Total 
Body Photography (TBP) images. Results demonstrate model performance with 
limited labeled data available. PanDerm outperformed the second-best models 

using only 10% of labeled images. b. Label efficiency analysis for melanoma 
classification using whole slide dermatopathology images. Results illustrate 
model performance with limited labeled data. PanDerm surpassed the second-
best models using less than 30% of labeled images.
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Extended Data Fig. 3 | Longitudinal dermoscopic image-based lesion 
change detection using PanDerm. For comparing subtle changes in paired 
lesions during short-term follow-up (for example, 3 months), images undergo 

dark corner detection and removal, skin inpainting, registration, and lesion 
segmentation. This allows models to focus on subtle differences between lesions 
at different time points. Panda icon from Flaticon.com.
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Extended Data Fig. 4 | SHAP (SHapley Additive exPlanations) value plot.  
It shows the impact of various measurement variables captured by the 3D TBP 
machine on the model output. The plot displays the relative importance and 
directional influence of each feature, with colors indicating high (red) to low 

(blue) feature values, and the x-axis representing the SHAP value or impact on the 
model’s prediction. Features are ordered by their overall importance, with ‘nevi 
confidence’ having the highest impact and ‘stdLExt’ the lowest.

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-025-03747-y

Extended Data Fig. 5 | Quantitative skin lesion segmentation results. 
 a, b. Segmentation performance measured by dice score (DSC) and Jaccard 
index ( JAC) for PanDerm and baseline models on ISIC2018 (n=2,074 dermoscopic 
images) and HAM10000 (n=7,011 dermoscopic images) datasets. c, d. Label 
efficiency generalization performance for PanDerm and baselines, showing 

mean DSC and JAC on ISIC2018 and HAM10000 datasets. Error bars in a, b 
indicate 95% confidence intervals; bar centers represent mean values; points in c, 
d denote mean values. All estimates are derived from five replicas with different 
seeds. Statistical significance was assessed using two-sided t-tests.
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Extended Data Fig. 6 | Qualitative skin lesion segmentation results. a. Comparison of PanDerm against baseline models on challenging examples from HAM10000. 
Red contours indicate ground truth masks, while cyan contours show model predictions. b. PanDerm segmentation results on a random selection of images from 
HAM10000.
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Extended Data Fig. 7 | Early melanoma detection results (reader study 1).  
Comparing PanDerm to 12 clinicians (7 experienced dermatologists, 5 
dermatology residents). X-axis: 89 melanoma lesion IDs; Y-axis: lesion image 

sequence length. Points on the histogram represent the initial time points of 
correct melanoma diagnoses. Points below y=0 correspond to melanoma lesions 
undetected throughout the sequence.
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Extended Data Fig. 8 | Sunburst plot of standard ontology on SD-128 dataset. Four experienced dermatologists collaboratively developed the standard ontology to 
systematically categorize the 128 skin conditions and facilitate expert evaluation in reader study3.
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Extended Data Fig. 9 | Demographic distribution of participants in reader study 3. a. Specialty distribution of participants. b. Career stage distribution of 
participants. c. Experience levels distribution by years.

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-025-03747-y

Extended Data Table 1 | Performance comparison between PanDerm and BiomedGPT across different dermatological tasks 
and modalities

Models are evaluated on various dermatological tasks spanning TBP, dermoscopic images, clinical photographs, and dermatopathology. Evaluation metrics include Area Under the Receiver 
Operating Characteristic curve (AUROC) for binary classification tasks and Weighted F1 score for multi-class classification. Performance is reported with 95% confidence intervals in 
parentheses. The best performance for each task is bolded. *** p < 0.001 compared to PanDerm. P-values calculated using a two-sided t-test.
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