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Diagnosing and treating skin diseases require advanced visual skills across
domains and the ability to synthesize information from multiple imaging
modalities. While current deep learning models excel at specific tasks
such as skin cancer diagnosis from dermoscopic images, they struggle

to meet the complex, multimodal requirements of clinical practice. Here
we introduce PanDerm, a multimodal dermatology foundation model
pretrained through self-supervised learning on over 2 million real-world

skin disease images from 11 clinical institutions across 4 imaging modalities.
We evaluated PanDerm on 28 diverse benchmarks, including skin cancer
screening, risk stratification, differential diagnosis of common and rare skin
conditions, lesion segmentation, longitudinal monitoring, and metastasis
prediction and prognosis. PanDerm achieved state-of-the-art performance
across all evaluated tasks, often outperforming existing models when

using only 10% of labeled data. We conducted three reader studies to assess
PanDerm’s potential clinical utility. PanDerm outperformed clinicians by
10.2% in early-stage melanoma detection through longitudinal analysis,
improved clinicians’ skin cancer diagnostic accuracy by 11% on dermoscopy
images and enhanced nondermatologist healthcare providers’ differential

diagnosis by 16.5% across 128 skin conditions on clinical photographs.
These results show PanDerm’s potential to improve patient care across
diverse clinical scenarios and serve as a model for developing multimodal
foundation models in other medical specialties, potentially accelerating the
integration of artificial intelligence supportin healthcare.

Thereisapressing need to fully harness the potential of artificial intel-
ligence (Al) in diagnosing and managing skin diseases. Although deep
learning has shown remarkable performance, often matching or sur-
passing dermatologists, current Almodels for dermatology remain lim-
ited toisolated tasks, such as diagnosing skin cancer from dermoscopic
images'. These models struggle to integrate various data types and
imaging modalities, reducing their utility in different real-world clinical
settings. Dermatology, like internal medicine, is inherently complex,
encompassing a broad spectrum of conditions from common derma-
tosesto life-threatening malignancies, necessitating acomprehensive,
patient-centered approach that integrates various clinical workflows.

In clinical practice, diagnosing and treating skin conditions
involves a range of tasks, including total-body skin cancer detection

and risk assessment?~, differential diagnosis of hundreds of dermato-
logical conditions such as inflammatory dermatoses and pigmentary
disorders®, multimodal image analysis™®, pathology interpretation®®,
monitoring lesion changes''? and predicting outcomes''. The
absence of integrated Al solutions capable of supporting these various
workflows currently hampers the practicalimpact of Alin dermatology.
Recent advances in foundation models have emerged as a promising
direction to address this challenge'>'®.

Foundation models are large-scale neural networks pretrained
onvast, diverse data using self-supervised learning techniques, often
leveraging weakly labeled or unlabeled data" . Built on rich knowl-
edge representations, these models have shown impressive perfor-
mance across medical fields such as ophthalmology®, radiology”
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Fig.1| Overview of this study. a-c, Pretraining dataset: 2.1 million dermatological
images from 11 clinical sources across 4 modalities, shown by modality (a), source
(b) and institution (c). d, PanDerm interprets multiple imaging modalities for
various dermatology tasks, evaluated in real-world melanoma screening and
three reader studies. Image types include dermatopathology (microscopic
biopsy specimens), clinical (wide-field lesion and surrounding skin), dermoscopic
(close-up dermoscope images) and TBP tiles (lesion crops). e, Architecture:

ViT-large encoder, regressor and CLIP-based teacher model, with representation
reconstruction and CLIP latent alignment objectives. f, Performance versus
pretraining data size and epochs (average AUROC on 8 benchmarks) compared
with alternative strategies. g, PanDerm outperforms existing models on 28
evaluation datasets across 4 modalities. Alliconsin d are from Flaticon.com,
except for the risk stratification, lesion change detection and survival analysis
icons, which are from Microsoft PowerPoint.
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and pathology? . Through comprehensive pretraining on large and
diverse data, these models develop versatile representations that can
effectively adapt to various clinical scenarios, outperforming previous
deeplearning modelsin downstream tasks. Their strong feature repre-
sentations also enable data-efficient applications®¥, requiring fewer
labeled samples, which is particularly crucial for medical domains in
which expert-annotated data are often limited.

However, developing effective foundation models for dermatology
presents unique challenges. The performance of foundation modelsis
inherently linked to the scale of their parameters and training data®*°.
Ingeneral computer vision, foundationmodels are pretrained on mas-
sive datasets such as ImageNet> or JFT-300M (ref. 32) and most exist-
ing dermatology Al models still rely on these models for downstream
adaptation. Some efforts have focused on self-supervised learning
specifically for dermatology using public datasets*** or web-sourced
skinimages®. However, these approaches are often limited by dataset
size, diversity or the lack of real patient data. Moreover, while recent
advances in medical foundation models have shown promise in vari-
ousspecialties, they cannot fully address dermatology’s unique needs.
Specialty-specific foundation models®®** typically focus on single
imaging modalities, while general biomedical models, despite their
broadscope, struggle with domain-specific datascarcity and integrat-
ing heterogeneous modalities for comprehensive clinical analysis.

Here weintroduce PanDerm, ageneral-purpose, multimodal der-
matology foundation model. Uniquely designed to integrate multiple
imaging modalities, PanDerm is pretrained on over 2 million images
sourced from1linstitutions across multiple countries, covering 4 imag-
ing modalities spanning diverse dermatological conditions (Fig. 1a-c).
Inthe pretraining stage, PanDerm uses the masked latent modeling and
contrastive language-image pre-training (CLIP)*® feature alignment
for self-supervised learning (Fig. 1e and Methods), showing supe-
rior data scalability and training efficiency compared with existing
self-supervised algorithms (Fig. 1f). The model achieves unified repre-
sentation learning across total-body photography (TBP) and clinical,
dermoscopic and dermatopathology images, enabling comprehensive
patient analysis throughout diverse clinical workflows (Fig. 1d).

We systematically evaluate PanDerm across 28 benchmarks
(Fig.1g), covering adiverse array of clinical tasks, including screening,
risk stratification, phenotype assessment, nevus counting, longitudinal
monitoring, lesion change detection, diagnosis of both common and
rare skin conditions and skin lesion segmentation, as well asrecurrence
prediction and prognosis. PanDerm achieves state-of-the-art perfor-
mance onall tasks, often using only 5-10% of the labeled training data
typically required. Through three reader studies, we show that this
unified multimodal approach outperforms clinicians in early-stage
melanomadetection, enhances clinicians’ diagnostic accuracy in skin
cancer diagnosis and supports nonspecialist healthcare providers
in the differential diagnosis of diverse skin conditions. These find-
ings highlight the potential of specialty-specific foundation models
to advance medical practice by integrating diverse modalities, with
broaderimplications for Aldevelopment across healthcare specialties.

Results

Ablation studies and training strategy comparisons

Toevaluate PanDerm’s effectiveness, we conducted systematic analyses
examining how model performance scales with training dataand com-
putational resources (datasets described in Supplementary Table 1).
First, compared with existing dermatology-specific models, PanDerm
showed strong scalability as training dataincreased from 0.8 to 1.8 mil-
lion skinimages (Fig. 1f, left). Notably, it achieved superior performance
to SWAVDerm®*, aleading dermatology self-supervised learning model,
using 33% less training data. When compared with other self-supervised
training techniques, PanDerm showed remarkable computational
efficiency, requiring only 200 training epochs to achieve the best
performance, compared with 500-800 epochs needed by leading

methods such as MILAN?, DINOv2 (ref. 38) and MAE" (Fig. 1f, right).
Furthermore, PanDerm also surpassed vision-language models such
as CLIP**, MONET* and biomedical-specific CLIP (BiomedCLIP)*° in
benchmark evaluations (Supplementary Table 1), while showing emer-
gent capabilities in dermatology similar to those of DINOv2 in natural
images, with linear probing performance comparable to full-parameter
fine-tuning (Supplementary Table 2). When evaluated against gener-
alist biomedical foundation models, PanDerm showed substantial
advantages across different dermatological tasks. Compared with a
representative modelin this category, BiomedGPT*, PanDerm showed
20.9% better area under the receiver operating characteristic curve
(AUROC) in melanoma detection, 34.7% higher weighted F1score in
differentiating between skin conditions and19.6% improved weighted
Flinanalyzing microscopic skintissueimages (Extended Data Table1).
Even using computationally efficient methods, PanDerm maintained
its advantages, outperforming both linear-probe and fine-tune ver-
sions of BiomedGPT by 14.3% and 5.1%, respectively, in linear probing
(Supplementary Table 3). On the basis of these promising results, we
expanded our evaluation to compare PanDerm with three representa-
tive Almodels: SL-Imagenet® and DINOv2 (ref. 38) (both widely used
foundation models pretrained on natural images with a ViT-Large*
backbone), and SWAVDerm™ (a self-supervised model pretrained on
alarge skinimage dataset from search engines).

Diagnostic performance and generalization ability across
datasets

We systematically evaluated PanDerm diagnostic performance across
10 public datasets from 4 imaging modalities and 7 international sites
(Fig.2a). These datasets covered multi-class classification of pigmented
neoplastic lesions and binary melanoma diagnosis tasks. PanDerm
consistently outperformed all other models, achieving significant
improvements on9 of 10 datasets, with average gains of 5.1%, 8.0%, 4.2%
and 0.9% on dermoscopic, clinical, TBP and pathology datasets, respec-
tively (Fig. 2a). Onrepresentative dermoscopy and clinical benchmarks
suchas HAM10000 (ref. 34) and PAD-UFES-20 (ref. 43), PanDerm sur-
passed the next-best models by 4.7% (P < 0.001) and 9.0% (P < 0.001),
respectively (Fig. 2a, Supplementary Table 4 and Extended Data Fig.1).

PanDerm showed strong performance even with limited training
data, achieving comparable results to other models while using only
10-30%of the labeled images (Fig. 2b and Supplementary Tables 5-10).
Additional results for other tasks are presented in Extended Data Fig. 2.
Totest PanDerm’s generalization applicability, we evaluated its perfor-
mance on melanoma diagnosis using images from seven external medi-
calcenters, representing patient populations different from the training
data. PanDerm showed significant superiority over all pretrained mod-
els, achieving higher AUROC scores across all external datasets (Fig. 2c).
Notably, it maintained high performance even on clinical photographs
that were not used during training, with AUROC gains of 4.0%, 2.6% and
2.1%on the three external clinical datasets (all P < 0.001).

Beyond skin cancer diagnosis, we evaluated PanDerm’s ability to
diagnose a broader range of skin conditions commonly seen in clinical
practice. We tested onthree complementary datasets: the public Derm-
Net dataset** covering 23 common conditions, along with two internal
datasets (MMT-09 with 9 conditions and MMT-74 with 74 conditions)
comprising 38,476 clinical images across 9 broad and 74 fine-grained
skin conditions. These datasets comprehensively cover inflammatory
diseases, infections, various types of skin tumors and other frequently
encountered skin problems. As shown in Fig. 2d, PanDerm achieved
weighted Flimprovements of 3.2%, 7.1% and 8.2% on MMT-09, DermNet
and MMT-74, respectively, compared with the next-best models (all
P<0.001). PanDerm’s advantage grew larger as the number of conditions
increased, showingits strong capability to handle complex, multi-disease
scenarios. PanDermalso outperformed all other pretrained modelsonall
metrics across the three datasets (all P < 0.001; Supplementary Table 11).
Inthe DermNet dataset, PanDerm exceeded the next-best model’s area

Nature Medicine | Volume 31| August 2025 | 2691-2702

2693


http://www.nature.com/naturemedicine

Article

https://doi.org/10.1038/s41591-025-03747-y

a
SL_lmageNet DINOv2 SwAV_Derm PanDerm
Dermoscopic images Clinical images TBP images Pathology images
P=0.005 1.0 1 - 1.0 P =040
104 P<0001 — P=0020  P=0015 pcooor o Rl
T . E 5 T = L s "Il
" 09 4 I 2 091 z 09+ ] =
s ol P <0001 I I 3 P <0001 C T, 3 L7 I Iz P <0001
5 = <O = — - I
S 08 e B 5 081 I ‘ | § o8] \ G091 g
le) 1 1 & 8 7o i i Ik 8 8 +
5 o7 At I 2071 [ - KNS 2 ;
< < I = 2 084
0.6 4 0.6 - 0.6 +
0.5 0.5 0.5 N 0.7 N
) N > > D > . . ) )
AN S R ENRO S RSO
&0 & N & o D AP S o S Lo
Qo e A Lo oD Ot S o O o g Qo
QO NN F R e APy F > S O \% o op O
00 ,\0\0 00 ,\f\,\b( @(\ %9 {b?" ’\‘6 q:\" @(\ //6 N Ay \"O\ @9 ob\ O{b% e
N O 4 N D g P & P OO &
\?\@@ e..LO & 6"9 & N © P & QV@// S
< ~
0.92 4 0.95 4 0.90 +
0.89 4 0.89 4 0.87 4
— Q —
;. 087 € o084 ; 0.84 4
; =)
i <
i SL_Imagenet i B
0.84 1 DINOV2 0.79 0.81
| SwWAV_Derm d
0817 ¢ Panberm 073 A 077 A 1
T T T T T T T T T T
10 20 30 50 100 10 20 30 50 100 10 20 30 50 100 10 20 30 50 100
Training data (%) Training data (%) Training data (%) Training data (%)
(n=8,207) (n=1,063) (n=1,493) (n=22,373)
c d
Generalization to external sites Multi-skin condition classification
1.0 P=0.023
1.0 4
- 0.9
P <0.001 I P<0.001 .9 1
09 | P<0001 P<0001  p<0001 P < 0.001
) b . 1 P 71 ,,,,,,,,, 3 o 08+ P <0.001
s b . - s . - G 3 o7 | - P <0001
S 08 I e :
= E Lo 06 1 p 0001 : -
0.5 4 - =l
0.7 4 0.4 4 p=o L
x
0.3
0.6 0.2 o >
N N D D D D 5
(‘é\t(v ‘:&@iq) \?Q%/(D N ) //(\) %*Q;\/\/ » \@\//‘1) \é\\//f]) ﬁéﬁ\/\& @l\ Do® @é‘?\:’\
S, .0 N S o S & C o ¥ o A N ¢ Sl
o5 ) Lo o <& Soon o N & 0L
g NN W) @ 05 NS & o5 S ~© \ o
NG @0 o2 K¥ R N oY O &7 B > &
hcs & N © s S e K4 » o
B N & N N

Fig.2 | PanDerm’s versatile capacity in diverse diagnosis tasks. a, Performance
comparison of PanDerm versus other pretrained models on 10 pigmented skin
lesion datasets across multiple centers and modalities. n, data size; c, class
number. Metrics: AUROC for binary class (c =2) and W_F1score for multi-class
(c>2) datasets. The dashed lines indicate the average model performance across
datasets. b, Comparison between PanDerm and other pretrained models in label
efficiency generalization on four representative datasets, showing performance
atvarious training data percentages. The vertical dashed lines indicate the data

quantity needed for PanDerm to match existing model performance. ¢, External
validation for melanoma diagnosis across 7 datasets. d, Performance evaluation
of general skin condition classification (up to 74 classes) using clinical images.
Theerrorbarsina, cand d show 95% Cls; bar centersina, cand d represent
mean values; dots in b represent mean values. Estimates were computed using
nonparametric bootstrapping with1,000 bootstrap replicates. Pvalues were
calculated using a two-sided t-test.

under the precision-recall curve (AUPR) by 14.7%. Further details on
the experimental setup, datasets and metrics are provided in Methods.

Short-term lesion change detection in sequential dermoscopic
images

Monitoring suspicious melanocytic lesions over a3-month periodisa
widely accepted procedure for early melanoma detection, as changes
often prompt excision to rule out melanoma, while stability can be
reassuring'”. We evaluated PanDerm’s ability to detect subtle changes in
lesions over time by analyzing pairs of sequential dermoscopic images.
To ensure accurate comparison despite variations in imaging condi-
tions, we developed a comprehensive image-processing system that

standardizes image quality and alignment (Extended Data Fig. 3).
This processing system, combined with PanDerm’s advanced lesion
change detection capabilities®, significantly improved change detec-
tion accuracy from 0.596 (95% confidence interval (CI) 0.567-0.624)
to 0.706 (95% Cl1 0.686-0.725) in sequential digital dermoscopic
imaging data (SDDI1) (Fig. 3a,c) (P < 0.001) and from 0.683 (95% Cl
0.517-0.894) t0 0.767 (95% C1 0.649-0.886) in SDDI2 (Fig. 3b,c, left)
(P<0.001). Using the optimized pipeline for all models, PanDerm
achieved AUROC improvements of 4.3% in SDDI1 (P < 0.001) and
3.7% in SDDI2 over the next-best model (Fig. 3¢, middle). For lesions
later diagnosed as malignant, PanDerm achieved an AUROC of
0.840 (95% C1 0.769-0.911), surpassing the next-best model by 15.0%
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dermoscopicimages). c, Ablation study on preprocessing methods using SDDI1
and SDDI2 ‘Default’ (directinput), ‘With warp’ (registration only), ‘With mask’
(lesion segmentation) and ‘With whole pipeline’ (complete preprocessing as

in Extended Data Fig. 3). For change detection in SDDI1and SDDI2, all models
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g, Kaplan-Meier curves for the RFlin invasive melanoma patients (ComBineMel
(n=305 patients)), stratified by PanDerm prediction scores. h, Forest plot of HRs
for PanDerm; stratified groups in invasive melanoma patients. i, Time-dependent
AUC of PanDerm versus clinical variable score combinations in ComBineMel.

j, Time-dependent AUC comparison of PanDerm and other pretrained models
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the bar centersindicate means. All estimates were derived from fivefold cross-
validation. Pvalues in d were derived from two-sided ¢-tests and those in h from
Wald tests within Cox proportional hazards models. Icons in e from Flaticon.com.

(P<0.01) (Fig. 3c, right). Further details on the lesion change detection
method and dataset details are provided in Methods and Supple-
mentary Tables 12-14.

Melanoma metastasis prediction and survival analysis

We explored PanDerm’s potential to predict melanoma progression
from dermoscopicimages, an emerging approach that could provide
valuable prognostic information at the time of diagnosis"**** (Fig. 3e).

We evaluated this capability using 680 dermoscopicimages from 370
patients withinvasive primary melanomaacross multiple international
centers (Fig. 3f). PanDerm showed exceptional accuracy in distinguish-
ing melanomas likely to metastasize, achievingan AUROC of 0.964 (95%
C10.937-0.991), surpassing the next-best model by 2.0% (P=0.073)
(Fig. 3d). It also showed strong capability in differentiating between
local and distant metastases, outperforming existing methods by 2.8%
(P<0.05) inthe weighted F1score (Supplementary Table 15).
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Tovalidate PanDerm’s clinical utility for patient risk stratification,
we conducted survival analyses using Kaplan-Meier analysis and Cox
proportional hazards regression. Patients classified as high risk by
PanDerm showed significantly shorter recurrence-free intervals (RFIs)
compared withthose inthe low-risk group (hazard ratio (HR) 5.63; 95%
ClI2.87-11.02, P < 0.001) (Fig. 3g). When compared alongside standard
clinical risk factors—including sex, age, Breslow thickness, ulcera-
tion, dermal mitosis, location and melanoma subtype—PanDerm’s
predictions emerged as the strongest indicator of recurrence risk in
multivariate Cox regression (Fig. 3h). It maintained high predictive
accuracy over extended follow-up periods, with time-dependent areas
under the curve (AUCs) of 0.950 (95% C1 0.910-0.991), 0.931 (95% CI
0.887-0.976) and 0.909 (95% CI 0.880-0.937) at 3 years, 5 years and
7 years, exceeding multi-clinical variables by 6.8%, 2.9% and 5.0%,
respectively (Fig. 3i). Combining PanDerm’s predictions with clinical
factors further improved long-term prognostic accuracy in AUCs at
Syearsand7 years. PanDermalso consistently outperformed other Al
approaches (Fig. 3j), showing improvements of 2.3%, 3.0% and 2.5% at
3years, 5 years and 7 years, respectively. Further details are provided
inMethods and Supplementary Tables 16 and 17.

Risk assessment and malignant lesion screening using TBP

We next evaluated PanDerm’s capability in analyzing whole-body imag-
ing (TBP)>** (Fig.4a). Unlike close-up imaging of individual lesions, TBP
enables comprehensive patient-level analysis, particularly for critical
melanomarisk factors such as photodamage and nevus count™**.Ina
cohort of 480 patients with 196,933 lesions from Australia, PanDerm
achieved aweighted F1score of 0.896 (95% C10.879-0.913) for photo-
damage assessment and an AUROC of 0.983 (95% C1 0.979-0.987) for
nevus counting, surpassing all other models (P<0.05and P<0.001,
respectively; Fig. 4b,c,g). Evenwith limited training data (10% of the full
dataset), PanDerm maintained superior performance (Extended Data
Fig.2).Inlesion-specific risk stratification, PanDerm also ranked first
with an AUROC of 0.705 (95% CI 0.698-0.712) and balanced accuracy
(BACC) of 0.657 (95% C1 0.6513-0.663), with all results statistically
significant (P < 0.001; Fig. 4d,h).

Inaclinical validation study, PanDerm effectively identified malig-
nant lesions among a large number of benign ones (216 malignant
versus 197,716 benign lesions) from the high-risk melanoma of patients
(HOP) study*’ and mind your model (MYM) study*® cohort (Fig. 4€).
Using TBP images alone, PanDerm achieved a sensitivity of 0.893,
outperforming the next-best model by 4.2% (Fig. 4j, left). When clini-
calmeasurements were available for allmodels, PanDerm maintained
its advantage with a 3.5% higher sensitivity (Fig. 4j, right), reaching a
sensitivity of 0.893.Significantly, it detected malignant lesions in 79 out
of 80 patients while reducing unnecessary examinations by 60.8% com-
pared with melanographers (3,498 versus 8,913 lesions recommended
for detailed examination) (Fig. 4j,k and Supplementary Table 18).

We observed that PanDerm’s analysis approach aligned well with
established clinical practice, particularly the ‘ugly duckling’ (UD)
concept® of identifying atypical lesions through comparison with
a patient’s other lesions. This was shown through UMAP visualiza-
tion (Fig. 4f), where PanDerm’s feature effectively separated suspi-
cious lesions. The clustering patterns in PanDerm’s risk assessment
(Fig. 41) showed correspondence closely with human screening pat-
terns (Fig. 4i), illustrating its exceptional performance in malignant
lesion screening. Additional details are provided in Methods, Supple-
mentary Tables 18-21 and Extended Data Fig. 4.

Skin lesion segmentation

We evaluated PanDerm’s performance on skin lesion segmentation
using the ISIC2018 (ref. 52) and HAM10000 (ref. 34) datasets. Com-
pared with existing methods including SL-Imagenet, autoSMIM* and
BATFormer®, PanDerm achieved significantly higher performance,
surpassing the next best by 3.1% and 1.9% in the Jaccard index on both

datasets (P < 0.001; Extended DataFig.5a,b). PanDerm’s performance
was particularly noteworthy in label-limited scenarios, matching the
next-best model while using only 5% of the training data (104 and 350
images for ISIC2018 and HAM10000, respectively; Extended Data
Fig.5¢,d). When compared with MedSAM*, a medical image segmen-
tation foundation model, PanDerm showed slightly better accuracy
(0.5%improvement, P=0.025and 0.112; Supplementary Table 22). This
is particularly impressive as PanDerm achieves this performance with-
outspecialized training forimage segmentation. Inaddition, PanDerm
offers practical advantages in clinical settings, processingimages about
four tofive times faster than MedSAM while using less computational
resources (Supplementary Table 23). Visual examples and detailed
performance metrics are provided in Extended Data Fig. 6 and Sup-
plementary Tables 22-25.

Reader studies

To assess PanDerm’s clinical applicability, we conducted three reader
studies evaluatingits capabilities across different aspects and modali-
ties of dermatological diagnosis, as follows.

Early melanoma detection compared with clinicians. To examine
PanDerm’s capability in early melanoma detection, we compared it with
12humanreviewers (7 experienced dermatologists and 5 dermatologist
trainees) using sequential dermoscopicimages from Alfred Hospital**,
featuring multiple follow-up images of the same lesions over time. The
study evaluated two key aspects: overall diagnosticaccuracy and early
melanoma detection capability. Interms of overall accuracy, PanDerm
outperformed the average human reviewer by 10.2% and surpassed
the best-performing human by 3.6%. For early detection, we assessed
the time point of the first suspicious changes detected in sequential
imagesrelative to clinical diagnosis and biopsy confirmation. PanDerm
showed superior ability in this challenging task, correctly identifying
77.5% (69 out of 89) of melanomalesions at the firstimaging time point,
compared withonly 32.6% (29 correct diagnoses) for human reviewers
(Extended Data Fig.7). Individual dotsinthe histogramsrepresent the
earliest correct diagnosis time points for both PanDerm and human
reviewers, visualizing the comparative early detection performance.

Human-Al collaboration for skin cancer diagnosis. We evaluated
PanDerm’s impact on clinicians’ diagnostic accuracy across seven
pigmented lesion classes using dermoscopic images (Fig. 5a). The
study included 41 clinicians with varying levels of competency who
evaluated cases both with and without PanDerm’s multi-probability
predictionsupport. PanDerm’s assistance significantly increased over-
all diagnostic accuracy from 0.69 (95% C1 0.65-0.73) to 0.80 (95% Cl
0.76-0.84, P< 0.001; Fig. 5b). Notably, clinicians with lower compe-
tency levels showed the greatest improvement, with accuracy gains
of17% (P=0.0082) for those with low competency and 12% (P < 0.001)
for those with medium competency, while highly competent clinicians
showed a 6% improvement (P=0.039; Fig. 5c and Supplementary
Table 26). Class-specific analysis revealed significantaccuracy improve-
ments in 4 of 7 lesion classes (P < 0.05; Fig. 5d and Supplementary
Table 27). For melanoma diagnosis specifically, PanDerm enhanced cli-
nicianaccuracy from 0.69 (95% C10.64-0.74) t0 0.83 (95% C10.79-0.87,
P<0.001). In addition, PanDerm alone achieved diagnostic accuracy
comparabletothat of clinicians with PanDerm assistance (0.81 versus
0.80; P=0.779).

Human-Al collaboration for 128 skin condition diagnoses. We con-
ducted acomprehensive reader study evaluating PanDerm’s diagnostic
capabilities across 128 skin conditions using clinical photos. The study
included 37 readers from 5 countries (Fig. 6b) and comprised 2 groups
(Fig. 6a): the dermatology group (n=20; 11 dermatology trainees
and 9 specialists) and the generalist group (n=17; 7 pre-vocational
trainees, 8 GPs, 1 nurse and 1 clinical trial assistant). This grouping
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Estimates were computed with nonparametric bootstrapping using 1,000
bootstrap replicates. Pvalues were calculated with a two-sided ¢-test. j, Malignant
lesion screening performance by sensitivity. Left: using only TBP data; right:
integrating measurement information. The numbers below the bars indicate the
recommended suspicious lesion count. k, Number of malignant lesions detected
inthe test set. f, UMAP plot of PanDerm screening results for test lesions. i, UMAP
plot of human screening results for test lesions. 1, UMAP plot of PanDerm risk
prediction results for test lesions. Allicons in a are from Flaticon.com, except the
risk predictionicon, which is from Microsoft PowerPoint.

represents the distinction in specialty training backgrounds between
dermatology-trained practitioners and those with general medical
training. Each reader assessed up to 50 cases from a 200-case pool,
providing their top 3 diagnoses both with and without PanDerm’s
assistance. Four experienced dermatologists developed astandardized
ontology for condition categorization (Extended Data Fig. 8). Perfor-
mance was assessed primarily using 2 metrics: a 4-point diagnostic
assessment scale for top 1diagnosis (4, exact ontology match, to1, sig-
nificant mismatch) and top 3 diagnostic accuracy, with3independent

dermatologists scoring and resolving discrepancies through panel
review. PanDerm’s assistance significantlyimproved the average top 1
diagnostic scores of all readers from 2.83 to 3.08 (P < 0.001; Fig. 6¢)
and top 3 diagnostic accuracy from 54% to 63.4% (P < 0.001; Fig. 6d),
whileincreasingreaders’ diagnostic confidence (2.17t02.42,P < 0.001;
Fig. 6e). The impact was particularly pronounced in the generalist
group, showing higher diagnosis modification rates (28.6% versus12.9%
in the dermatology group; Fig. 6f) and greater improvementsin both
top 1diagnostic scores (generalist group, +0.45; dermatology group,
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d, Accuracy comparison without versus with PanDerm by diagnostic class based
onreadings per class: MEL (n=332), BCC (n=166), AKIEC (n =166), BKL (n =166),
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+0.25; Fig. 6g) and top 3 accuracy (generalist group, +16.5%; derma-
tology group, +10.3%; Fig. 6h). Analysis by condition classes showed
consistent improvements across inflammatory, neoplastic and other
categories (P < 0.05; Fig. 6i,j), with inflammatory conditions show-
ing the largest gains (+0.36 in top 1 diagnostic scores, +14.2% in top 3
accuracy). Furthermore, when usedindependently, PanDermachieved
higher diagnosticaccuracy than both unassisted readers (top 1scores:
3.6 versus 2.83; P< 0.001) and human-Al collaboration (top 1 scores:
3.6 versus 3.08; P< 0.001). Further details on the setup, methodology,
reader statistics and datasets of all three reader studies are provided
inMethods, Extended Data Fig. 9 and Supplementary Tables 26-29.

Discussion

Despite significant advances in Altechnology, its applicationin clinical
medicine remains fragmented and underutilized. Current Al systems
are often restricted to isolated tasks and are unable to address the
diverse demands of medical decision-making. This limits the potential
of Alin supporting clinicians in disease diagnosis and management.
Dermatology, withits complex requirements, including holistic patient
assessment, lesion-specific analysis and potential use of various imag-
ing modalities, serves as anideal use case for showing Al’s capabilities
across multiple interconnected clinical tasks. Success in this domain
could pave the way for broader adoption of Almodels across healthcare.

In this study, we introduce PanDerm, a versatile dermatology
foundation model trained through self-supervised learning on over
two million multimodal dermatologicalimages. Central to PanDerm’s
development was the curation of a large and diverse image dataset
sourced primarily from in-house collections and carefully selected
public repositories. This approach contrasts with previous efforts,
such as SWAVDerm*, which relied on web-sourced skin data, inad-
vertently incorporating images from commonly used benchmarks
such as ISIC* and DermNet**, increasing the risk of data leakage and
compromising evaluation validity. Our strategy minimizes this risk,
ensuring that benchmark evaluations accurately reflect real-world
model performance.

To evaluate PanDerm’s clinical utility, we conducted validations
across 28 benchmark datasets, spanning comprehensive skin cancer
assessment and a diverse set of primary care dermatological condi-
tions. For skin cancer-related assessment, PanDerm outperformed
existing modelsin specialized tasks across various modalities, includ-
ing risk stratification of lesions, phenotype assessment, detection of
lesion changes and malignancy, multi-class cancer diagnosis, lesion
segmentation, and metastasis prediction and prognosis. In particular,
PanDermachieved the most results using only 10% of the task-specific
training datatypically required by existing models, helping alleviate the

scarcity of specialist-labeled datain medical Al. In primary care derma-
tology settings, PanDerm also outperformed comparative models in
diagnosing a diverse set of conditions such asinflammatory diseases,
infectious conditions and frequently encountered dermatoses. These
capabilities stem from its rich knowledge representation, developed
through pretraining on varied dermatological image modalities and
conditions, leading to consistent and significant performanceimprove-
ments across tasks and modalities.

Threereader studies further supported these benchmark findings,
suggesting PanDerm’s potential to assist clinical practice across dif-
ferent healthcare settings and specialty training backgrounds. In skin
cancer diagnosis, PanDerm showed capabilities toimprove diagnostic
accuracy across clinicians of varying competence levels and identify
concerninglesions before clinician detection—potentially facilitating
earlierintervention. Ingeneral dermatology, PanDermimproved read-
ers’ differential diagnosis across various skin conditions (for example,
inflammatory dermatoses, cutaneous neoplasms and pigmentary
disorders), with more substantial benefits observed among general-
ists (for example, primary care providers) evaluating inflammatory
conditions—a considerable portion of everyday dermatological consul-
tations. Given limited specialist access in primary care settings where
most skin conditions are initially evaluated**”, these findings indicate
PanDerm’s potential to address dermatological expertise gaps across
healthcare settings throughbothits technical capabilities and clinical
applications. Importantly, across both human-Al collaboration stud-
ies, PanDerm alone performed equivalently to clinicians with PanDerm
assistancein skin cancer diagnosis and even outperformed human-Al
collaboration in differential diagnosis, similar to observations in a
previous study’® showing ‘no significant difference between large
language model (LLM)-augmented physicians and LLM alone’. This
phenomenon probably stems from clinicians’ selective incorporation
of Al recommendations rather than blind adherence, representing a
balanced clinicalimplementationin which practitioners maintain their
diagnostic autonomy while still benefiting from Al support.

The scaling behavior observed in PanDerm’s performance aligns
with recent foundation model trends****?**°, although achieving this
indermatology required addressing unique challenges in medical data
acquisition and integration. Our analysis revealed two key technical
insights: first, using CLIP*® as a teacher model achieved superior train-
ing data efficiency (Fig. 1f), outperforming the most representative
method, DINOv2 (ref. 38)—particularly valuable given healthcare’s
dataset limitations compared with the typical requirement of DINOv2
of 142 million images. Second, the masked feature reconstruction
approach proved more effective at capturing subtle diagnostic features
than methods such as MAE". These advantages enabled PanDerm
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Fig. 6 | Performance of PanDerm in human-Al collaborative assessment of
128 skin conditions using clinicalimages. a, Reader demographics (n =37
readers): dermatology group (n=20readers) including residents and specialists,
and generalist group (n =17 readers) including pre-vocational trainees, general
practitioners, nurses and clinical trial assistants. Each reviewed up to 50 of 200
cases. b, Geographic distribution of readers. c-e, Reader-wise analysis (each
datapoint represents one reader, n = 37 readers): comparisons without versus
with PanDerm support for: top 1diagnostic assessment score (1-4) (c), top 3
diagnostic accuracy (d) and diagnostic confidence score (1-4) (e). f, Diagnosis
change ratio after PanDerm support by specialization group. g,h, Class-wise
analysis (each data point represents one skin condition class): comparisons

without versus with PanDerm support by specialization groups for the top 1
diagnostic assessment score (1-4) (g) and top 3 diagnostic accuracy (h) (n =128
classes per group).i,j, Comparisons without versus with PanDerm support by
disease category for the top 1 diagnostic assessment score (1-4) (i) and the top
3 diagnosticaccuracy (j), stratified by inflammatory (n = 78 classes), neoplastic
(n=37 classes) and other (n =13 classes) conditions. Pvaluesin c-e were
calculated using two-sided paired t-test across readers, while Pvalues in g-j
were calculated using two-sided paired ¢-test across classes. In all the boxplots,
the horizontal lines represent medians and the white dots represent means.
The upper and lower box limits indicate the 1st and 3rd quartiles, with whiskers
extendingto 1.5 times the interquartile range. Error bars represent 95% Cls.

to improve upon both traditional models***° and recent generalist

medical models such as BiomedGPT*. While generalist models advance
broader biomedical Al, our results suggest that specialty-specific
foundation models designed with clinical workflows in mind may offer
more practical solutions for specialties in which multiple imaging
modalities are crucial.

Despite promising results, we acknowledge several limitations
in our evaluation scope and methodology. While our validation cov-
ered approximately 200 skin conditions across major categories
(for example, inflammatory diseases, infections, neoplasms, benign
growths, pigmented lesions and vascular anomalies), this represents
only afraction of known dermatological conditions (over 1,000 diag-
noses) and is smaller than some previous studies (for example, ref. 6
with 445 conditions), with limited coverage of rare genetic disorders,

complex systemic diseases and clinical variants. Regarding model
robustness and fairness, while ourbenchmark evaluations (Supplemen-
tary Tables 30 and 31) show consistent performance across different
settings (anatomical locations, age groups, genders and skin tones),
several constraints exist: the evaluation mainly reflects overall accuracy
rather than disease-specific analysis, has varying disease coverage
across anatomical locations and focuses primarily on single imaging
modalities. Amore comprehensive evaluation framework® integrating
these aspects will be necessary for further assessing PanDerm’s robust-
ness. Furthermore, recent studies® ** have highlighted important
challenges in dermatological Al systems, particularly in human-Al
interactions. Although our evaluations show stable cross-skin-tone
performance without explicitly balanced training data (as shown to
be necessary in a previous study®), comprehensive bias assessment
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requires metrics beyond overall accuracy. Another study® further
revealed that equitable stand-alone performance may not translate to
unbiased human-Al collaboration, whichis crucial for clinical deploy-
ment. Toaddress these limitations, future work should develop stand-
ardized protocols for cross-demographic evaluations using more
comprehensive fairness metrics and investigate biases in human-Al
collaborative settings. International collaborations such as ISIC* will
be crucial for creating representative datasets and establishing robust
fairness standards.

In conclusion, PanDerm shows the potential of multimodal
specialty-specific foundation models in addressing the diverse clini-
calneeds across specialized and routine clinical practice in dermatol-
ogy. Through comprehensive pretraining on diverse dermatological
images and validation across multiple clinical scenarios, the model
showed robust performance across different use cases. Our devel-
opment approach, combining systematic data curation, advanced
self-supervised learning and rigorous clinical validation, provides a
framework for developing medical Al systems that can adapt to vary-
ing levels of clinical expertise and healthcare settings. These findings
suggest promising directions for developing foundation models in
other medical specialtiesin which the integration of diverse imaging
modalities and complex clinical workflows is crucial for patient care.
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Methods

Ethics statement

The MYM study was approved by the Metro South Health Human
Research Ethics Committee on 21 April 2016 (approval number: HREC/16/
QPAH/125). Ethics approval has also been obtained from the University
of Queensland Human Research Ethics Committee (approval number:
2016000554), Queensland University of Technology Human Research
Ethics Committee (approval number: 1600000515) and QIMR Berg-
hofer (approval number: P2271). The HOP study has received approval
fromthe Human Research Ethics Committee (HREC) from Metro South
Health HREC (HREC/17/QPAH/816) and the University of Queensland
HREC (2018000074). The ComBineMel dataset is part of the Computer
Biomarkers Evaluation of Invasive Melanoma (ComBine Mel) study.
The study was approved by the Alfred Hospital Ethics Committee on
8 August 2023 (approval number: HREC/98200/Alfred-2023). The study
follows the National Statement on Ethical Conduct in Human Research
(2007) protocols. The SDDI2 dataset has been approved by the Ethics
Review Board of the Medical University of Vienna. The MMT data study
ispartofaresearch agreement study withMonash eResearch Centre and
was approved through the Monash University Human Research Ethics
Committee. The naevus surveillance study images (NSSI) dataset is part
oftheBrisbane Naevus Morphology Study, circa2009-2014. The study
followed the Declaration of Helsinki protocols and was approved by the
Princess Alexandra Hospital human research ethics committee. The
ACEMID pathology (ACEMID_path) pilot study has received approval
from the Alfred Hospital Ethics Committee (approval number: 746,/23)
to share data accrued for registered trial ACTRN12619001706167
(ACEMID) under the Metro South Human Research Committee proto-
col HREC/2019/QMS/57206 and the University of Queensland Human
Research Ethics Committee protocol 2019003077. The SDDI_Alfred
study hasreceived approval from the Alfred Hospital Ethics Committee
(approvalnumber:198/19) for the use of sequential dermoscopicimag-
ing data. Only de-identified retrospective data were used for research,
without the active involvement of patients.

Pretraining dataset for developing PanDerm

We curated an extensive pretraining dataset comprising 2,149,706
unlabeled multimodal skinimages to develop PanDerm. This diverse
datasetencompasses 4 imaging modalities and 11 data sources: 757,890
(35.3%) TBP tiles, 537,047 (25.4%) dermatopathology tiles, 460,328
(21.4%) clinical images and 384,441 (17.9%) dermoscopic images. This
multimodality approach provides acomprehensive representation of
skinlesions, enabling the model tolearn robust features across differ-
entvisual representations.

MYM cohort (TBP). The MYM cohort™ is anin-house dataset studying
the natural history of melanocytic nevi from 193 Australian partici-
pants recruited from the electoral roll. Three-dimensional (3D) TBP
was conducted using VECTRA WB360 (Canfield Scientific), capturing
92 cross-polarized two-dimensional (2D) images with standardized
lighting to create a 3D avatar. The average lesion tiles per subject was
approximately 500. The final dataset comprises 405,856 automatically
detected lesionimagetiles >2 mmin diameter. Demographicinforma-
tion is available in Supplementary Table 32.

HOP cohort (TBP). The HOP study*’ is an in-house sequential
dataset of high-risk melanoma individuals with 314 participants.
Three-dimensional TBP imaging used the VECTRA WB360 system
following the same protocol as MYM. Demographic and clinical data
were collected through standardized questionnaires. More details
about demographic information are available in Supplementary
Table 33.

MYM and HOP cohort (dermoscopic). These datasets also contain
38,110 dermoscopic images from suspicious lesions, providing

complementary visualization of surface and subsurface structures
potentiallyindicative of various skin conditions, particularly melanoma.

MMT dataset. The MMT dataset is an in-house collection amassed
from over 150 clinics across Australia and New Zealand over a 15-year
period. This extensive dataset primarily consists of paired polarized
dermoscopic and clinical images. From this comprehensive collec-
tion, we curated a subset containing 316,399 dermoscopicimages and
310,951 clinical images, providing arich source of pretraining data for
training purposes.

ACEMID pathology pilot study. This dataset comprises 54 patients
from Queensland, Princess Alexandra Hospital (PAH) (48.1%) and
New South Wales Melanoma Institute Australia (NSW MIA) (51.9%),
with 57.4% males, aged 19-75 years (mean 53.4). Most patients (81.5%)
were classified as ‘very high’ risk for melanoma, while others were ‘high’
risk (14.8%) or ‘low or average’ risk (1.9%). Lesions were predominantly
nevi (68.5%, including common, dermal and congenital, and dysplas-
tic, variants), melanomas (24.1%, mostly in situ) and other lesions
(7.4%). While 66.7% had single lesions examined, othershad 2-5lesions
per patient. Notable diagnostic variability between pathologists was
observed. More details are available in Supplementary Table 34.

NSSI. NSSlisanin-house sequential collection 0f 29,832 dermoscopic
images from 1,254 individuals in Brisbane, Australia (2009-2014).
Images were collected using a digital dermatoscope attached to a
Fotofinder ATBM imaging system (768 x 576 pixels at 96 dpi). The
studyincluded up to 7 time points per participant at 6-monthintervals
over 3 years. Individual lesions maintained consistent identification
numbers across visits. See Supplementary Table 35.

Edu1 and Edu2. The Educational source 1 (Edul) and Educational
source 2 (Edu2) datasets comprise 81,947 and 67,430 clinical images,
respectively, fromin-house educational resources. They cover inflam-
matory and autoimmune disorders (psoriasis, atopic dermatitis),
infections (herpes simplex, molluscum contagiosum, tinea corporis),
pigmentary disorders (melasma, vitiligo), nail conditions (psoriatic nail
disease, onychomycosis), vascular lesions (port-wine stains, pyogenic
granulomas), and both benign and malignant tumors (melanoma, basal
cell carcinoma, squamous cell carcinoma), including rare conditions
and genetic disorders.

ISIC2024.1S1C2024 (ref. 47) is an open-source TBP-based dataset for
identifying skin cancers among lesions cropped from 3D total-body
photographs. We selected a subset containing 352,034 tile images,
stratified by institutions.

TCGA-SKCM. The Cancer Genome Atlas—skin cutaneous melanoma
(TCGA-SKCM) dataset® from The Cancer Genome Atlas project charac-
terized the mutational landscape of human skin cutaneous melanoma.
It contains 475 slides processed into 377,764 patch images.

UAH89k. The UAH89k dataset®® includes 269 histopathology whole
slideimages from Heidelberg University, MVZ for Histology, Cytology
and Molecular Diagnostics Trier, and the Institute for Dermatopathol-
ogy, enriching the model’s understanding of skin conditions at the
microscopic level.

Detail of model architecture and pretraining

PanDerm is a self-supervised learning model designed for the der-
matology field, built upon the success of existing self-supervised
learning techniques in the natural image domain®. At its core, the
architecture comprises a ViT-Large visual encoder*’, amask regressor
and a CLIP-Large® teacher model. The ViT-Large encoder, with its 24
transformer blocks and 1,024 dimensional embeddings, processes
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224 x 224-pixel images, while the CLIP-Large teacher model handles
slightly smaller 196 x 196-pixel inputs. The training processincorporates
two primary objectives: masked latent alignment and visible latent
alignment loss. Initially, the input image undergoes masking, with the
mask ratio proportional to the encoder’scomplexity (50% for ViT-Large).
The encoder then processes visible patches to produce latent repre-
sentations, while the regressor predicts the latent representations of
masked patches using these visible latent and mask tokens. The model
focusesonthe encoder-regressor structure without aseparate decoder
component. Theregressor assumes the responsibility of predicting the
latent representations of masked patches, allowing for more efficient
processing and learning. For target supervision, the unmasked image
isfed through the CLIP model, generating supervision divided accord-
ing tovisibleand masked patch locations. The visible latent alignment
loss is directly applied to the latent representations of visible patches
computed by the encoder. Concurrently, the masked latent alignment
loss acts onthe latent representations of masked patches predicted by
the regressor. Both of these loss functions use CLIP latent representa-
tions as their supervision signals. The regressor in PanDerm operates
similarly to across-attention mechanism. Ituses learnable mask tokens
as queries, while the keys and values are derived from the concatenation
ofvisible patch representations and the output of previous layers. This
design allows the regressor to effectively infer the content of masked
regions based on the context provided by visible areas. Optimization
primarily focuses on aligning the visible and masked patch predictions
withtheir corresponding CLIP latent supervisions. This approach ena-
bles PanDermto extractrich, semantically meaningful representations
from dermatological images without relying on explicit labels.

For pretraining, we continued to train the model (initially trained
on ImageNet-1K) on our dataset of over two million unlabeled multi-
modal skin images, representing diverse dermatological conditions.
We set the batch size on each graphics processing unit (GPU) to 480,
with an effective batch size 0f1,920. Following masked image modeling
practices®®, we used a 50% mask ratio. To train our model, we used
AdamW as the optimizer with an initial learning rate of 1.5 x 107, We
apply simple data augmentation such as random resized cropping
and horizontal flipping during pretraining. We trained our model
for 500 epochs with a warmup of 20 epochs. The pretraining phase
used 4 80-GB NVIDIA H100 GPUs and took approximately 5 days and
7 h. We chose the last epoch checkpoint as our final model weights.
Please refer to Supplementary Table 36 for more detailed pretraining
hyperparameter configurations.

Target representations (teacher model) of PanDerm. We tested dif-
ferent teacher models, including CLIP-base, CLIP-large, Biomed CLIP*
and MONET*’ (dermatology-specific CLIP). CLIP-large outperformed
biomedical-specific and dermatology-specific CLIP models, probably
owingto the limited datascale of skinimages in medical-domain CLIP
models. Our model with CLIP-large teachers significantly improved
performance and outperformed CLIP-large itself. See Supplementary
Table1for detailed results.

Linear probing versus fine-tuning for PanDerm. We explored
whether PanDerm’s features are ready for downstream tasks without
fine-tuning, similar to DINOv2 (ref. 38) in the natural image domain.
Our model using simple linear probing performed comparably with
expensive full-parameter fine-tuning, suggesting that PanDerm’s
features are already well suited for diverse downstream multimodal
skin-related tasks without requiring further training. Detailed results
areinSupplementary Table 2.

Downstream evaluation details

Competing self-supervised learning baselines. For self-supervised
learning methods comparison, we evaluated DINOv2 (ref. 38), MAE"
and MILANY, all using the same ViT-Large backbone. We used the

recommended hyperparameter configurations for these models and
continued pretraining from their natural image training weights on
our pretraining dataset. Subsequently, we fine-tuned these models
using identical hyperparameter setups to ensure a fair comparison.

Fine-tuning and linear probing. Inadapting PanDerm to downstream
tasks, only the encoder model is used. For most tasks, PanDerm’s fea-
ture quality suffices to achieve competitive performance using simple
linear probing. Thisinvolves applying alinear classifier (that s, logistic
regression) to the top of extracted features from the PanDerm encoder
toevaluateits performance on downstreamtasks. For more challenging
tasks requiring higher performance, we opted to fine-tune the Pan-
Dermencoder. The fine-tuning tasksinclude the threereader studies,
short-term change detection, skin lesion segmentation, skin cancer
detection in ISIC2024 and TBP-based risk stratification. For all other
tasks, we used linear probing. For linear probing, following practices
recommended by the self-supervised learning community, we fix the £,
regularization coefficient A to MC/100, where M is the embedding
dimension and Cis the number of classes, and use the L-BFGS solver
with a maximum of 1,000 iterations. For fine-tuning, we adhere to
the BEIiT V2 setting®®, using cross-entropy loss with a learning rate of
5x107*. We train models for 50 epochs withawarmup of 10 epochs. The
model showing the best performance on the validation setis selected
asthefinal model. For detailed hyperparameter configurations, please
refer to Supplementary Table 37.In the following sections, we describe
tasks with more specific methodological details.

Sequential data preprocessing for lesion change detection. Our
proposed sequential data-preprocessing method consists of dark
corner removal, skininpainting, hair removal, image registration and
lesion segmentation. For the first two steps, we follow the approach
outlinedinaprevious study®. Given animage with or without dark cor-
ner artifacts, we convert it to grayscale and extract the contour using
the OpenCV’® binary threshold function (threshold = 100) with the
findContours function (RETR_TREE mode and CHAIN_APPROX_SIMPLE
method). We identify the largest contour by calculating the area of all
existing contours, captureacircular area using the minEnclosingCircle
function, scale to 80% of the original radius and inpaint using the Telea
algorithm (radius =10). For hair removal, we convert to grayscale, apply
ablack hat morphological operationwitha17 x 17 structuring element,
thethreshold to create abinary mask, and inpaint. Forimage registra-
tion, weimplement the AKAZE" feature-based approach: detecting key
points (descriptor size = 0, threshold =9 x 107, octaves = 4), match-
ing using the Brute Force matcher with Hamming distance, refining
with RANSAC to estimate a EuclideanTransform model and warping
using skimage.transform.warp with reflection padding and linear
interpolation.

Siamese network for change detection. Similar to a previous study*,
we use a simple Siamese network architecture for change detection,
in which two identical visual encoders with shared weights from our
foundation model process a pair of sequential lesion images captured
overashorttime frame. Each encoder extracts features fromits respec-
tive image. These learned features are then concatenated and passed
through two fully connected layers, followed by a softmax layer for
final classification. For training this Siamese network in our binary
change detection task, we use a contrastive loss function. This loss
is particularly well suited for Siamese networks as it helps the model
learn to distinguish between pairs of images that have changed and
those that have not. The contrastive loss encourages the network to
minimize the distance between feature representations of image pairs
with nosignificant changes while maximizing the distance for pairs that
show meaningful changes. This approach allows the network tolearn
asimilarity metric between image pairs, rather than simply classifying
individual images.
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Melanoma metastasis prediction and survival analysis. We use a
linear probing classifier on our foundation model to predict mela-
noma metastasis using dermoscopic images from the private Com-
BineMel dataset. Our evaluation encompasses two scenarios: binary
metastasis prediction and multi-class metastasis prediction. In the
binary classification, we aim to differentiate between the presence
of any metastasis (including local, satellite and in-transit metastases,
lymph node recurrence, and distant metastasis) and its absence. The
multi-class prediction presents amore complex challenge, categoriz-
ing cases into three groups: control (no metastasis); local, satellite
and in-transit metastases; and distant metastasis. To enhance the
robustness and mitigate potential data selection bias, we performfive
iterations of dataset splitting into training and testing sets, stratified
by melanomastage. The modelis trained using these fivefold data. We
linear probed PanDerm with the setting mentioned above. We then
generated out-of-fold predictions for all lesions and compare these
with the ground truth for performance evaluation.

Subsequently, we conduct a multivariate Cox regression analysis,
incorporating the metastasis prediction score and clinical variables
(age, sex, Breslow thickness, ulceration, dermal mitosis, melanoma
subtype and lesion location) to predict the RFI. This analysis focuses
on earlier stages of melanoma (stages I-1I). We visualize the relative
contribution of individual variables to prognosis prediction using a
forest plot. To analyze the correlation between variables and RFI, we
use the Kaplan-Meier method. Patients are stratified into low-risk and
high-risk groups based on their binary metastasis prediction scores
(medianvalue). Thelog-rank test is used to assess the classifier’s ability
to predictsurvival. To evaluate the predictive accuracy at various time
points, we generate time-dependent receiver operating characteristic
curves and calculate AUCs at 3 years, 5 years and 7 years.

Melanoma screening using TBP. The melanomascreening algorithm
isdesigned toidentify high-risk lesions among whole-body images, aid-
ing clinicians in efficiently detecting potential malignancies. Lesions
flagged as high risk undergo further triage and dermoscopic exami-
nation. The screening model integrates three modules: a risk predic-
tionhead, aUD detection head and amachine learning module, using
both TBP image data (image tiles) and metadata for comprehensive
predictions. We first fine-tune our foundation model, equipped with
the risk prediction head, using TBP image tiles to classify lesions as
high risk or low risk. All lesion images are resized to 224 x 224 pixels
and subjected to data augmentation, including color and geometric
transformations. The risk prediction head, comprising asingle linear
layer, identifies lesions as highriskif subjected to dermoscopy exami-
nation and lowrisk otherwise. The UD detection head leverages the ‘UD
sign’, an effective diagnostic strategy that compares alllesions from the
same patient to identify outliers. This approach capitalizes on lesion
contextual information. We use the fine-tuned foundation model to
extract deep learning features, which are then processed by the UD
detection head. This module calculates the distance between each
lesion’s features and the average features of all lesions from the same
patient, using the interquartile range methodto select outlier lesions.
The machine learning module, an extra tree classifier, is trained using
TBP metadata, which include 32 measurements for each lesion from
the 3D TPB machine. This module directly predicts malignancy based
on pathology labels. The final screening result combines predictions
fromallthree modules. Alesionis flagged as suggestive of malignancy
if any module yields a positive prediction. We evaluate the screening
performance at both the lesion and patient levels to ensure compre-
hensive accuracy assessment.

Weakly supervised slide classification. Weakly supervised slide
classification tasks are approached using the established two-stage
multiple instance learning framework: (1) extracting instance-level
features from tissue regions within the whole slide image (WSI) and

(2) developing an order-invariant aggregation method to consolidate
patch-level datainto slide-level representation. For preprocessing, we
use the CLAM toolbox’*for tissue segmentation, partitioning regions
into 256 x 256 nonoverlapping sections at x20 magnification, then
resizing to 224 x 224 and normalizing using ImageNet parameters.
Toevaluate pretrained encoders, weimplement the attention-based
multipleinstancelearning algorithm’ with consistent configurations.
Ourimplementation features a two-tier gated ABMIL structure with
an initial FC layer mapping to 512-dimensional space, followed by
intermediate layers with 384 hidden units. We incorporate dropout
regularization (rates 0.10 and 0.25), use the AdamW optimizer™ with
a cosine learning rate schedule (initial rate 1 x 107, weight decay
1x107%), and use cross-entropy loss. Training runs for 20 epochs with
early stopping based onvalidation loss. We ensure robust evaluation
through fivefold cross-validation, stratifying by both case and label
attributes.

Skin lesion segmentation. For skin lesion segmentation, we use a
conventional segmentation paradigm, using a network encoder con-
nected to asegmentation decoder and head. Our proposed PanDerm
serves as the encoder in this setup. We benchmark PanDerm against
three established models: ViT-Large*?, autoSMIM?*® and BATFormer”.
Both ViT and PanDerm use an UperNet decoder, following the official
ViT implementation. For autoSMIM and BATFormer, we adhere to
their official repository settings. ViT-Large and autoSMIM encod-
ers are initialized with ImageNet pretrained weights. To ensure a fair
comparison, all images are resized to 224 x 224. We apply online data
augmentation, including colorjittering, randomrotation and random
flipping, to mitigate overfitting. The training uses an AdamW optimizer
with aninitial learning rate of 5 x 10™* and a weight decay of 0.01, with
thelearning rate decaying accordingto a cosine schedule. The models
are trained for 100 epochs, and we save the model that achieves the
best evaluation metrics on the validation set.

Early melanoma detection (reader study 1). We fine-tuned our foun-
dation model on the private SDDI-Alfred dataset>* using a tenfold
cross-validation approach. We used cross-entropy loss with a learn-
ing rate of 5 x10™*. We train models for 50 epochs with a warmup of
10 epochs. The model showing the best AUROC on the validation set
is selected as the final model. We then used an out-of-fold prediction
approachtogenerate melanoma predictions for all sequential images.
For each image sequence, we recorded the time point at which the
model first made a correct diagnosis of melanoma; otherwise, the
model was considered to have failed in detecting the melanoma. While
biopsy servesas our reference standard, we aimed to explore the algo-
rithm’s potential to detect early signs of melanoma progression. Our
study focused onidentifying suspicious changesin sequentialimages
before clinical diagnosis, with the goal of enabling earlier intervention
when melanomas are most treatable. For the human evaluation, 12
clinicians—seven dermatologists with over 5 years of experience and
five dermatology residents with less than 5 years of experience—were
invited to assess the serial dermoscopic data. The images were pre-
sented to the reviewers using Qualtrics (Provo), with the reviewers
blinded to the true diagnoses. For each case, information such as the
patient’s age, sex, lesion location and date of imaging was provided.
Initially, only the first dermoscopicimage in the sequence was shown,
and reviewers were asked to classify the lesion as either benign or
malignant. As they progressed through the sequence, side-by-side
image comparisons were made available to assess changes over time.
Once a diagnosis was submitted, it could not be revised. To mitigate
bias, weincluded tensingle time-point melanomaimages, preventing
reviewers from assuming that the firstimage in a series was benign. We
then compared the diagnostic performance of the clinicians with our
model, focusing on the time point at which a malignant diagnosis was
first made by either the clinicians or the algorithm.
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Human-Al collaboration for skin cancer diagnosis. The reader
study was conducted using DermaChallenge, a web-based platform
developed and hosted by the Medical University of Vienna for online
education on dermatoscopy, as described in previous studies’”’. To
ensure proper authentication and data management, readers were
required to register with a unique username, valid email address and
password. Active users on the platform, who previously actively agreed
tobecontacted, wererecruited via asingle email. Before commencing
the study phase, all users had to finish three introduction levels to be
familiarized with the platforms’ user interface and image types. The
number of correct answers in the firstiteration of these levels, normal-
ized against the mean score of the entire DermaChallenge platform
user base, served as a score of experience. Users were grouped into
‘low’ (n=11), ‘medium’ (n =21) and ‘high’ (n=9) experience based on
quantileswith cutsat 0.25and 0.75 probability (R stats::quantile() func-
tion). Within the study level, users were shown batches of 10 images,
randomly selected froma pool of1,511images, that s, the ISIC 2018 Task
3 test set, with a predefined diagnosis distribution (actinic keratosis
andintraepidermal carcinoma (AKIEC): 1, basal cell cacinoma (BCC): 1,
benign keratinocyticlesion (BKL): 1, dermatofibroma (DF):1, vascular
lesion (VASC): 1, melanoma (MEL): 2, melanocytic nevus (NV): 3). For
eachimage, a user had to choose one diagnosis out of seven options,
and subsequently again after assistance from our foundation model,
presented as multi-class probabilities visualized as bars and numbers
for each class. Readers had the flexibility to complete multiple survey
rounds with different image batches at their discretion; incompletely
answered batches were omitted. The study was conducted online from
20 August to 12 September 2024, during which we collected datafrom
41raters. Our foundation model for decision support used a weighted
random sampler strategy, following the approach from’ but exclud-
ing test-time augmentation. The model showed robust performance,
achieving an 80.4% mean (macro-averaged) recall, with notably high
recall rates for critical skin lesions: 87.2% for melanoma and 86.0%
for BCC.

Human-Al collaboration for 128 skin condition diagnoses. The
reader study was conducted using a web-based platform developed
for online dermatological assessment. A total of 37 healthcare profes-
sionals participated inthe study, categorized into two groups based on
specialization: adermatology group (n =20) comprising 9 dermatol-
ogy specialists and 11 specialty trainees, and ageneralist group (n =17)
including 7 GPs, 7 general medicine practitioners and 3 other health-
care professionals (nursing, clinical trial assistants) who manage skin
conditions within their broader practice scope. This grouping strat-
egyreflects the real-world clinical setting in which nondermatologist
healthcare professionals routinely perform initial skin assessments.
The diverse range of 128 skin conditions enabled the evaluation of
diagnostic performance between dermatologically trained profession-
als and those with general medical training. Readers were presented
with clinical images and asked to provide their assessment through
astructured questionnaire. Each participant rated image quality on
a 5-point scale (from ‘not at all’ to ‘completely’ assessable), provided
aprimary diagnosis through free-text entry and optionally listed two
differential diagnoses ranked by likelihood. Diagnostic confidence
was recorded on a 4-point scale (1, not at all confident; 2, somewhat
confident; 3, confident; 4, highly confident). Following their initial
assessment, readers were shown PanDerm’s top 3 predicted diagno-
ses and given the opportunity to maintain or modify their original
diagnosis and differential diagnoses, followed by a reassessment of
their confidence using the same 4-point scale. The study collected
1,342 responses between 1July and 2 October 2025. Before the evalu-
ation, four experienced dermatologists collaboratively developed a
standard ontology to systematically categorize the 128 skin conditions
andfacilitate expert evaluation (Extended DataFig. 8). The evaluation
process involved multiple expert assessors who independently scored

diagnostic accuracy using a 4-point scale: 4, direct match with the
predefined term in the ontology; 3, match within the same diagnos-
tic category in the ontology; 2, inconsequential misdiagnosis; and 1,
significant mismatch, potentially dangerous misdiagnosis. To ensure
robust assessment, each case was evaluated by three assessors, with
cases showingsignificant scoring discordance (differences between 3/4
and1/2) reviewed in consensus meetings to establish final scores. For
the top 3 accuracy evaluation, both human readers and Al assistance
were evaluated based onwhether the correct diagnosis appeared within
their top 3 diagnostic choices.

Evaluation metrics. For multi-class tasks, we primarily use aweighted
F1score, which averages class-specific F1 scores (harmonic means of
precision and recall) weighted by class size. It addresses class imbal-
anceinmulti-class scenarios. For binary classification, we primarily use
AUROC, measuring the model’s ability to distinguish between classes
across all classification thresholds. An AUROC of 1.0 indicates perfect
classification, while 0.5 suggests random guessing. This metricis par-
ticularly useful forimbalanced datasets and when we need to evaluate
trade-offsbetween true-positive and false-positive rates. For the three
reader studies, we report accuracy (top 1 or top 3). In skin lesion seg-
mentation, we use the Dice similarity coefficient andJaccard index to
assess segmentation quality. For TBP-based melanomascreening, we
primarily report the sensitivity (recall) in malignant lesions, focusing
onthe model’s ability to correctly identify malignant cases.

Statistical analysis. For skin tumor patch classification, melanoma
slide classification, reader studies, metastasis prediction and skin
lesion segmentation, we conduct k-fold cross-validation owing to
either arelatively small sample size or following conventional prac-
tice. We compute the mean and standard deviation of performance
across the folds, then calculate the standard error by dividing the
standard deviation by the square root of the number of folds. The
95% Clis derived using 1.96 times the standard error. To assess sta-
tistical significance, we conduct two-sided ¢-tests comparing Pan-
Derm’s performance against the baseline model for each task. For
the remaining datasets, we use nonparametric bootstrapping with
1,000 replicates to estimate 95% Cls for each model’s performance.
To compare models, we implement pairwise permutation tests, con-
ducting 1,000 permutations per pair and recalculating performance
metrics after each permutation. We derive two-sided P values to
evaluate the null hypothesis that paired observations stem from
identical distributions. In addition, we perform ¢-tests to assess the
statistical significance of inter-model performance variations. Our
null hypothesis posits no discernible difference between PanDerm’s
performance and that of its competitors. P < 0.05 was regarded as
statistically significant.

Skin cancer and general skin condition classification datasets
HAM10000 (7 classes). The HAM1000O (ref. 34) dataset contains
10,015 dermoscopic images across 7 classes: actinic keratoses, basal
cell carcinoma, benign keratosis, dermatofibroma, melanocytic nevi,
melanoma and vascular lesions. It is stratified into 60% training, 20%
validation and 20% test sets. For human-Al collaboration, we used the
official dataset. All other experiments used the clean version from a
previousstudy’®, which prevents data leakage by ensuring thatlesions
fromthe same patient are not split across sets.

BCN20000 (9 classes). The BCN2000O (ref. 79) dataset comprises
12,413 dermoscopic images in 9 categories: nevus, melanoma, basal
cell carcinoma, seborrheic keratosis, actinic keratosis, solar lentigo,
squamous cell carcinoma, dermatofibroma and vascular lesions,
including lesions in hard-to-diagnose locations. It is similarly strati-
fied (60-20-20 split). We used the clean version of BCN20000, which,
like the HAM10000, addresses data leakage issues.
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MSKCC (2 classes). The Memorial Sloan Kettering Cancer Center
(MSKCC)* dataset is curated from the MSKCC data from the ISIC
archive®, containing 8,984 dermoscopic images with melanoma and
other classes.

HIBA (2 classes). The HIBA* dataset is curated from the HIBA data
from the ISIC archive®, containing 1,635 dermoscopic images with
melanoma and other classes.

PAD-UFES-20 (6 classes). The PAD-UFES-20 (ref. 43) dataset from
Brazil contains 2,298 close-up clinicalimages with 6 classes, including
actinickeratosis, basal cell carcinoma of the skin, malignant melanoma,
melanocytic nevus of the skin, squamous cell carcinoma and sebor-
rheic keratosis.

DDI (2 classes). We grouped the classes of the diverse dermatology
images (DDI) dataset® into melanoma and others. The dataset contains
647 clinical images from the United States.

Derm7pt (2 classes). Derm_Disasubset of Derm7pt (ref. 80), contain-
ing 839 dermoscopicimages, and Derm_C contains 839 clinicalimages
with melanoma and other classes.

1SIC2024 (2 classes). ISIC2024 (ref. 47) is amulticenter dataset with
skin lesion crops from TBP. We chose holdout data with 49,025 crop
images with three institutions (FNQH Cairns, Alfred Hospital, Mela-
noma Institute Australia) as the evaluation dataset.

PH2 (3 classes). PH2 (ref. 81) is a clinical image dataset from Portugal
with 200 images and 3 classes. We reorganize it to a binary melanoma
detection task.

Med-Node (2 classes). The Med-Node®? dataset contains 170 clinical
images. We reorganize it to abinary melanoma detection task.

DermNet (23 classes). DermNet** contains 19,559 clinical images; this
dataset consists of images of 23 types of skin diseases and captures
common clinical presentations including inflammatory conditions
(eczema, psoriasis), infections (bacterial, viral, fungal) and neoplastic
diseases.

Fitzpatrick17K (114 classes). The Fitzpatrick17K (ref. 62) dataset
comprises 16,577 clinical images annotated with both dermatologi-
cal diagnoses and Fitzpatrick skin types (I-VI). It encompasses 114
distinct conditions (minimum of 53 images per condition) spanning
major dermatological categories: inflammatory dermatoses (psoriasis,
lichen planus, various eczematous conditions), cutaneous malignan-
cies (melanoma, morpheiformand solid-cystic variants of BCC, SCC),
papulosquamous disorders (pityriasis rosea, pityriasis rubra pilaris),
autoimmune conditions (lupus erythematosus, bullous diseases),
benign neoplasms (seborrheickeratosis, dermatofibroma) and various
other clinically significant entities (acanthosis nigricans, granuloma
annulare, necrobiosis lipoidica).

MMT-09 (9 classes). The dataset is an in-house clinical dataset with
9 skin condition classes, including benign keratinocytic, malignant
keratinocytic, melanocytic, inflammatory conditions and benign
tumors, vascular lesion, basal cell carcinoma, malignant keratinocytic,
melanoma and squamous cell carcinoma. We chose 38,476 images as
our evaluation dataset.

MMT-74 (74 classes). The MMT-74 dataset (Supplementary Table 38)
is acomprehensive in-house clinical collection comprising 38,476
dermatological images across 74 detailed skin condition classes, build-
ing upon and refining the broader 9-class structure of MMT-09. This

structured dataset encompasses diverse dermatological conditions,
including detailed classifications of basal cell carcinoma variants
(nodular, pigmented, superficial and recurrent), melanocytic lesions
with specific pattern recognition (such as acral patterns and various
nevus types), inflammatory disorders (dermatitis, psoriasis), benign
proliferations (including seborrheic keratosis variants) and vascu-
lar lesions (angiomas, telangiectasias). The dataset was specifically
designed to evaluate deep learning models’ performance across a
diverse and clinically relevant range of skin conditions, with categories
spanning inflammatory, infective, benign proliferations, melanocytic
and eczema classifications.

SD-128 (128 classes). This dataset encompasses 5,619 clinical images
covering 128 dermatological conditions spanning the complete spec-
trum of clinical practice. The dataset provides substantial coverage
of inflammatory dermatoses, ranging from common presentations
(such as psoriasis and atopic dermatitis) to less common entities
(such as leukocytoclastic vasculitis). It includes diverse infectious
diseases of bacterial, viral and fungal etiologies, as well as a compre-
hensive range of proliferative lesions from benign nevi to malignant
melanomas. The collection also extends to appendageal disorders,
physical-trauma-related changes, nail disorders and hair-loss condi-
tions. This extensive compilation represents both frequently encoun-
tered conditions in everyday practice and challenging rare cases,
providingarobust resource for clinical diagnostic support. This dataset
contains 5,619 clinical images encompassing diverse dermatological
conditions commonly encountered in clinical practice. The dataset
provides substantial coverage of inflammatory conditions from com-
mon presentations (psoriasis, atopic dermatitis) to lesscommon enti-
ties (leukocytoclastic vasculitis); various infectious diseases spanning
bacterial, viral and fungal etiologies; and a range of proliferative lesions
frombenign nevi to malignant melanomas as well as appendageal dis-
orders and physical-trauma-related changes. We used 10% of the data
stratified by disease labels for benchmark evaluation. In addition, we
selected 200 images stratified by disease classes for our reader study.

Skin tumor patch classification (PATCH16) (16 classes). The skin
tumor patch classification task®® consists of tissue patches of 378
histopathology WSIs from the archive of the Institute of Pathology,
Heidelberg University, the MVZ for Histology, Cytology and Molecular
Diagnostics Trier and the Institute for Dermatopathology Hannover
for classification of 16 categories including 4 tumor types and 12 nor-
mal tissue structures. We obtained a total of 129,364 image patches
0f 100 x 100 pm (395 x 395) size. The dataset was stratified by label,
with 55% allocated for training, 15% for validation and 30% for testing.

Melanomaslide classification (WSI) (2 classes). The melanomaslide
classification task® from the National Cancer Institute’s Clinical Prot-
eomic Tumor Analysis Consortium Cutaneous Melanoma (CPTAC-CM)
cohort consists of histopathology WSIs for cancer detection. After
selectinglabeled WSIs, we obtained 302 slides (71 normal, 231 tumor).
For training and evaluation, we used a fivefold cross-validation strategy
with label-stratified splits to maintain class balance.

Early melanoma detection based on SDDI-Alfred (2 classes). The
dataset (Supplementary Table 39) consists of 179 serial dermoscopic
imaging sequences from 122 patients, totaling 730 dermoscopic
images. The patients were recruited from a private specialist derma-
tology clinic, with follow-up periods ranging from January 2007 to
December 2019. The study population showed distinct characteris-
tics between melanoma and benign groups: patients with melanoma
had a mean age of 56.6 years (s.d. =11.8) compared with 49.6 years
(s.d.=11.4) in the benign group, with slightly different gender distri-
butions (53.9% male in melanoma versus 40.0% male in benign cases).
Both melanomaand benign lesions that underwent short- or long-term
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SDDI at least once before biopsy were included. The dataset is well
balanced, with 90 benign lesions and 89 malignant lesions. Of the 89
melanomas, 34 (38.2%) were invasive, with amean Breslow thickness of
0.5 mm, while 55 (61.8%) were in situ. The melanomasubtypesincluded
invasive superficial spreading melanoma (SSM) (36.0%), in situ SSM
(31.4%), unspecified in situ (18.0%), lentigo maligna (12.3%) and inva-
sive lentigo malignamelanoma (LMM) (2.2%). The benign lesions were
predominantly dysplastic nevi (40.0%), followed by compound nevi
(27.8%), junctional nevi (18.9%) and intradermal nevi (8.9%). Anatomi-
cally, lesions were most commonly located on the lower limb (29.2%
melanoma, 26.7% benign) and back (23.5% melanoma, 25.6% benign).
All lesions were monitored via digital dermoscopy, excised owing to
clinical concerns and confirmed by pathological examination. The
number of images per sequence varied from1to 12, with an average of
approximately 4 images per sequence.

Longitudinal and melanoma metastasis datasets

Short-term lesion change detection based on SDDI1 (2 classes).
The SDDI1 (ref. 55) dataset is sourced from the ‘Repeated Dermoscopic
Images of Melanocytic Lesions’ by University Hospital Basel, available
in the ISIC archive. It comprises 116 sequential lesions, each with a
sequence length of 5, from 66 patients. The dataset is categorized into
two classes for lesion change detection.

Lesion change detection based on SDDI2 (2 classes). SDDI2 is an
in-house dataset from the Medical University of Vienna. It contains 229
sequential dermoscopicimages with asequence length of 2. The data-
setincludes both binary change labels and more fine-grained malignant
change labels. This dataset is also used for short-term lesion-change
detection.

Melanoma metastasis and survival prediction (2 or 3 classes).
The ComBineMel dataset encompasses 680 dermoscopic images of
invasive melanoma from 370 patients recruited across 10 hospital
sitesinmultiple countries, including Australiaand 5 European nations.
For large melanomas, multiple images were captured to ensure com-
prehensive coverage of the entire lesion area. The study populationis
included in Supplementary Table 40. Regarding disease staging, the
majority of cases were classified as stage 1 (70.5%), followed by stage 11
(16.5%), stage 11 (12.2%) and stage IV (0.8%). Interms of T classification,
Tla was the most common (59.2%), followed by T2a (18.6%) and T4b
(13.2%). Sentinel lymph node biopsy was not performed in most cases
(71.6%), with 10.8% positive and 17.6% negative results among those
tested. For nodal status, N1 disease was the most common (10.8%),
followed by N2 (3.8%) and N3 (1.8%). Regarding metastasis status, 248
(67.0%) of cases showed no metastasis, while 66 (17.8%) presented
with metastasis at the time of diagnosis. Inaddition, 56 (15.1%) of cases
developed metastasis during the follow-up period.

Skin lesion segmentation based on 1SIC2018 and HAM10000. The
skinlesion segmentation task is evaluated using two publicly available
datasets. ThelISIC2018 dataset™ comprises 3,694 dermoscopicimages
with 2,594 images for training, 100 for validation and 1,000 for testing.
We follow this official dataset split for our experiments. The HAM10000
dataset®*includes 10,015 dermoscopicimages, each with correspond-
ing binary segmentation labels. A randomized selection approach is
adopted, with 64% of the images used for training, 16% for validation
and the remaining 20% for testing.

3D TBP datasets

This dataset comprises 3D TBP images captured using the VECTRA
WB360 system (Canfield Scientific). The system uses 92 cameras
to simultaneously capture cross-polarized 2D images with stand-
ardized lighting within seconds, which are then merged to create
a high-fidelity 3D avatar of each patient’s entire skin surface. From

these 3D avatars, individual lesion tiles were exported for further
analysis. Unlike stand-alone clinical photographs, TBP represents a
higher-order imaging modality in which 2D tiles are systematically
derived from 3D reconstructions, maintaining spatial relationships.
The standardized acquisition with calibrated lighting enables the
capture of the entire body surface with overlapping views, providing
consistent anatomical landmarks and contextual information for
comprehensive assessment, including skin phenotype patterns, lesion
measurements and ‘UD’ sign application. The images undergo calibra-
tion and stitching, resulting in standardized 2D tiles with consistent
quality across all body regions.

Photodamage risk assessment datasets (3 classes). This in-house
dataset® containsimage tiles (693 x 693 pixels) created from 92 raw 2D
photos, eachrepresenting approximately 10 cm? of cutaneous surface.
Tiles with <33% skin surface were excluded using pixel color analysis.
Manual review removed out-of-focus images, tiles with multiple body
sites or identifying features. The final dataset comprises 5,022 image
tilesfromMYM** and HOP* studies, labeled as low, moderate or severe
photodamage risk labeled primarily by dermatology students.

Nevus counting datasets (2 classes). This dataset, derived from
the in-house MYM®*° study, contains 28,227 lesion tiles annotated as
nevus or nonnevus. Three expert physicians independently labeled
lesions on-screen, with consensus determined by >2 clinicians’ agree-
ment. A senior dermatologist manually identified neviin-clinicusinga
dermatoscope, serving as the gold standard for the test set. To ensure
consistency, lesions under underwear, on the scalp or on foot soles
were excluded, and only lesions >2 mm were considered. A minimum
1-month interval was maintained between on-screen and in-clinic
labeling sessions.

Risk prediction and TBP screening datasets (2 classes). This dataset
comprises 2,038 TBP scans from 480 patients, collected fromthe MYM
and HOPstudies. The raw TBP scans include neviimages and a variety
of nonrelevantimages such as normal skin, scars and freckles. To focus
only on nevi, we applied filtering parameters based on built-in Vectra
data settings: majorAxisMM > 2, deltaLBnorm = 4.5, out_of_bounds_
fraction < 0.25, dnn_lesion_confidence > 50 and nevi_confidence > 80.
This process resulted in 196,933 lesion image tiles. We stratified the
data by the patient for training, validation and testing: 360 patients
fortraining (146,752 images), 40 patients for validation (19,483 images)
and 80 patients for testing (30,698 images, including 28 malignant
lesions). Of the total dataset, 216 images represent malignant lesions,
with 40 confirmed melanoma cases.

Measurements in TBP. Alongside the image tiles, Vectra provides a
range of measurements for each lesion, mainly including size, color
and shape. Our TBP screening model incorporates 32 such measure-
ments: ‘A, ‘Aext’, ‘B’, ‘Bext’, ‘C’, ‘Cext’, ‘H’, ‘Hext’, ‘L, ‘Lext’, areaMM2’,
‘area_perim_ratio’, ‘color_std_mean’,‘deltaA’, ‘deltaB’, ‘deltal’, ‘deltalB’,
‘deltaLBnorm’, ‘dnn_lesion_confidence’, ‘eccentricity’, ‘location_simple’,
‘majorAxisMM’, ‘minorAxisMM’, ‘nevi_confidence’, ‘norm_border’,
‘norm_color’, ‘perimeterMM’, ‘radial_color_std_max’, ‘stdL’, ‘stdLExt’,
‘symm_2axis’ and ‘symm_2axis_angle’.

Computing hardware and software

Scripts for datacollection and processing were writtenin Python (ver-
sion 3.9.19) using the libraries Pandas (version 2.2.2), Numpy (version
1.26.4) and Pillow (version 10.3.0). For self-supervised pretraining,
we used 4 x 80 GB NVIDIA H100 GPUs configured for multi-GPU
single-node training using DistributedDataParallel (DDP) as imple-
mented by Python (v.3.9.13), PyTorch (v.2.2.1, CUDA 11.8) and Torchvi-
sion (v.0.17.1). The CAE-v2 code is used as the codebase to develop
our foundation model, which can be found in its official repository
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(https://github.com/Atten4Vis/CAE). For downstream task evaluation,
allexperiments were conducted on4 x 49 GBNVIDIA 6000 Ada GPUs.
We used Python (v.3.9.19), PyTorch (v.2.2.2, CUDA 11.8) and Torchvision
(v.0.17.2) for fine-tuning tasks, and Python (v.3.10.14), Py Torch (v.2.2.2,
CUDA11.8) and Torchvision (v.0.17.2) for linear probing tasks. We used
Scikit-learn (v1.2.1) for logistic regression in the linear probing setting.
Implementation of other comparative pretrained models was modified
based onthe official configurationin their respective repositories: MAE
(https://github.com/facebookresearch/mae), SL_ImageNet (https://
huggingface.co/timm/vit_large_patchl6_224.orig_in21k), DINOv2
(https://github.com/facebookresearch/dinov2), SWAVDerm (https://
github.com/shenyue-98/SwAVDerm), autoSMIM (https://github.
com/Wzhjerry/autoSMIM), BATFormer (https://github.com/xianlin7/
BATFormer), MedSAM (https://github.com/bowang-lab/MedSAM),
ResNet50 (https://pytorch.org/vision/main/models/generated/torch-
vision.models.resnet50.html), MILAN (https://github.com/zejiangh/
MILAN), CLIP (https://github.com/openai/CLIP), BiomedCLIP (https://
huggingface.co/microsoft/BiomedCLIP-PubMedBERT_256-vit_base_
patchl6_224) and MONET (https://github.com/suinleelab/MONET/
tree/main).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Most datasets used in this study are publicly available. These data-
sets used for skin lesion diagnosis and segmentation tasks can be
accessed through various repositories. The ISIC archive (https://
www.isic-archive.com/) hosts several datasets, including MSKCC and
HIBA. Other widely used benchmark datasets are available through
their respective portals: BCN20000 (https://figshare.com/articles/
journal_contribution/BCN20000_Dermoscopic_Lesions_in_the_
Wild/24140028/1), PAD-UFES-20 (https://www.kaggle.com/datasets/
mahdavil202/skin-cancer), DDI (https://ddi-dataset.github.io/index.
html), Derm7pt (https://derm.cs.sfu.ca/Welcome.html), ISIC2024
(https://www.kaggle.com/competitions/isic-2024-challenge),
Med-Node (https://www.kaggle.com/datasets/prabhavsanga/
med-node), DermNet (https://www.kaggle.com/datasets/shub-
hamgoel27/dermnet), WSI (https://portal.gdc.cancer.gov/projects/
TCGA-SKCM), PATCH16 (https://heidata.uni-heidelberg.de/dataset.
xhtml?persistentld=doi:10.11588/data/7QCRSS), ISIC2018_task1 and
HAM10000 (https://challenge.isic-archive.com/data/), SDDI1 (https://
api.isic-archive.com/collections/328/), PH2 (https://www.fc.up.pt/
addi/ph2%20database.html), SD-128 (https://huggingface.co/datasets/
resyhgerwshshgdfghsdfgh/SD-198) and UAH89k (https://heidata.
uni-heidelberg.de/404.xhtml;jsessionid=6a9c0981ef8e0874c5dca6
e1600a). Access to in-house datasets is restricted due to patient pri-
vacy considerations. These include MMT for dermoscopic and clinical
image pretraining and downstream multi-skin condition classification,
NSSI for sequential dermoscopic image pretraining, ACEMID_path
for dermatopathology pretraining, Edul and Edu2 for clinical image
pretraining, SDDI2 for lesion change detection, SDDI_Alfred for reader
study 1 (early melanoma detection) and the TBP data from MYM and
HOP studies for all TBP-based pretraining and evaluation. Researchers
interested in accessing these datasets should direct their requests to
the corresponding author. All requests will receive a response within
2 weeks of submission. Requests will be evaluated according to institu-
tional and departmental policies to ensure compliance withintellectual
property rights and patient privacy obligations. The availability of
these datamay be subject to additional restrictions or requirements.

Code availability
We have made the encoder code and weights available for downstream
task applications. They are available via GitHub at https://github.com/

SiyuanYanl/PanDerm. We have documented all experiments in detail in
Methods to enable independent replication. To facilitate the broader
use of our model, we have provided tutorial Jupyter notebooks and
downstream evaluation code suitable for a wide scientific audience.
These resources have been made available to ensure transparency and
to promote further research in this field.
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Extended Data Fig. 1| Performance of PanDerm versus other pretrained
models on10 pigmented skin lesion datasets across multiple centers and
modalities. a. Performances are measured by weighted F1 (W F1).

b. Performances are measured by AUROC. c. Performances are measured by
AUPR. d. Perfor- mances are measured by BACC. n: datasize, c: class number.

Dashed lines show the average performance of each model across different
datasets. Estimates were computed using nonparametric bootstrapping with
1000 bootstrap replicates. P-values calculated using a two-sided t-test. Error bar,
95% Cls; bar centers, means.

Nature Medicine


http://www.nature.com/naturemedicine

Article

https://doi.org/10.1038/s41591-025-03747-y

Photodamage, TBP

Q

S 95

o .

<D( 94 SL-imagenet

DINOv2
93 SwAVDerm
—— PanDerm
10 20 30 50 100

Percentage of training data (n=3,914)

Extended DataFig. 2 | Label efficiency generalization results on additional
tasks. a. Label efficiency analysis for photodamage risk assessment using Total
Body Photography (TBP) images. Results demonstrate model performance with
limited labeled data available. PanDerm outperformed the second-best models
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using only 10% of labeled images. b. Label efficiency analysis for melanoma
classification using whole slide dermatopathology images. Results illustrate
model performance with limited labeled data. PanDerm surpassed the second-
best models using less than 30% of labeled images.
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Extended Data Fig. 3 | Longitudinal dermoscopicimage-based lesion dark corner detection and removal, skin inpainting, registration, and lesion
change detection using PanDerm. For comparing subtle changes in paired segmentation. This allows models to focus on subtle differences between lesions
lesions during short-term follow-up (for example, 3 months), images undergo at different time points. Pandaicon from Flaticon.com.
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Extended Data Fig. 5| Quantitative skin lesion segmentation results.

a,b. Segmentation performance measured by dice score (DSC) and Jaccard
index (JAC) for PanDerm and baseline models on ISIC2018 (n=2,074 dermoscopic
images) and HAM10000 (n=7,011 dermoscopic images) datasets. ¢, d. Label
efficiency generalization performance for PanDerm and baselines, showing
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seeds. Statistical significance was assessed using two-sided t-tests.
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Extended Data Fig. 6 | Qualitative skin lesion segmentation results. a. Comparison of PanDerm against baseline models on challenging examples from HAM10000.
Red contours indicate ground truth masks, while cyan contours show model predictions. b. PanDerm segmentation results on a random selection of images from

HAM10000.
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systematically categorize the 128 skin conditions and facilitate expert evaluation in reader study3.
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Extended Data Table 1| Performance comparison between PanDerm and BiomedGPT across different dermatological tasks

and modalities

Modality | Tasks Dataset Metric ResNet50 | BioMedGPT |  PanDerm
TBP Melanoma detection ISIC2024 AUROC 0.8023** 0.6840*** 0.893
(2 classes) (0.7327-0.8723) | (0.5670-0.8009) | (0.839-0.940)
Dermoscopic | Metastasis Prediction CombinMel | AUROC 0.9378* 0.7774*** 0.964
images (2 classes) (0.8979-0.9618) | (0.7094-0.8453) | (0.937-0.991)
Dermoscopic | Skin cancer classification | HAM clean | Weighted 0.8606™** 0.8309*** 0.926
images (7 classes) F1 (0.8411-0.8771) | (0.8142-0.8476) (0.912-0.940)
Clinical General(common) skin DermNet Weighted 0.4181*** 0.3086*** 0.619
images condition classification F1 (0.4039-0.4323) | (0.2952-0.3220) (0.603-0.634)
(23 classes)
Clinical General skin condition Fitzpatrickl | Weighted 0.2578*** 0.1350*** 0.4817
images classification 7K clean F1 (0.2410-0.2747) | (0.1225-0.1475) | (0.4628-0.5005)
(115 classes)
Dermato- Tumor classification PATCH16 Weighted 0.8304*** 0.7066*** 0.903
pathology (16 classes) F1 (0.8242-0.8365) | (0.6991-0.7142) | (0.898-0.908)

Models are evaluated on various dermatological tasks spanning TBP, dermoscopic images, clinical photographs, and dermatopathology. Evaluation metrics include Area Under the Receiver
Operating Characteristic curve (AUROC) for binary classification tasks and Weighted F1 score for multi-class classification. Performance is reported with 95% confidence intervals in
parentheses. The best performance for each task is bolded. *** p < 0.001 compared to PanDerm. P-values calculated using a two-sided t-test.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed
IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

< The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[ ] Adescription of all covariates tested
|:| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Gjve P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

XXX [0 0 XX [OOOS

|:| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Scripts for data collection and processing were written in Python (version 3.9.19) using the libraries Pandas (version 2.2.2), Numpy (version
1.26.4), and Pillow (version 10.3.0).

Data analysis For self-supervised pretraining, we used 4 x 80GB NVIDIA H100 GPUs configured for multi-GPU single node training using
DistributedDataParallel (DDP) as implemented by Python (v.3.9.13), PyTorch (v.2.2.1, CUDA 11.8) and Torchvision (v.0.17.1). The CAE-v2 code
is used as the codebase to develop our foundation model, which can be found in its official repository (https://github.com/Atten4Vis/CAE).
For downstream task evaluation, all experiments were conducted on 4 x 49 GB NVIDIA 6000 Ada GPUs. We used Python (v.3.9.19), PyTorch
(v.2.2.2, CUDA 11.8), and Torchvision (v.0.17.2) for finetuning tasks, and Python (v.3.10.14), PyTorch (v.2.2.2, CUDA 11.8) and Torchvision
(v.0.17.2) for linear probing tasks. We used Scikit-learn (v1.2.1) for logistic regression in the linear probing setting. Implementation of other
comparative pretrained models was modified based on the official configuration in their respective repositories: MAE (https://github.com/
facebookresearch/mae), SL ImageNet (https://huggingface.co/timm/vit_large_patch16_224.orig_in21k), DINOv2 (https://github.com/
facebookresearch/dinov2), SwWAVDerm (https://github.com/shenyue-98/SwAVDerm) , autoSMIM (https://github.com/Wzhjerry/autoSMIM) ,
BATFormer (https://github.com/xianlin7/BATFormer) , MedSAM (https://github.com/bowang-lab/MedSAM) , ResNet50 (https://pytorch.org/
vision/main/models/generated/torchvision.models.resnet50.html) , MILAN (https://github.com/zejiangh/MILAN), CLIP (https://github.com/
openai/CLIP) , BiomedCLIP (https://huggingface.co/microsoft/BiomedCLIP-PubMedBERT_256-vit_base_patch16_224), and MONET (V1.0)
(https://github.com/suinleelab/MONET/tree/main). To facilitate the broader use of our model, we have provided tutorial using Jupyter
notebooks. The downstream evaluation code and model weights are available at https://github.com/SiyuanYan1/PanDerm.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Most datasets used in this study are publicly available. These datasets used for skin lesion diagnosis and segmentation tasks can be accessed through various
repositories. The ISIC archive (https://www.isic-archive.com/) hosts several datasets, including MSKCC and HIBA. Other widely used benchmark datasets are
available through their respective portals: BCN20000 (https://figshare.com/ articles/journal contribution/BCN20000 Dermoscopic Lesions in the Wild/24140028/1),
PAD-UFES-20 (https://www.kaggle.com/datasets/mahdavi1202/skin-cancer), DDI (https://ddi-dataset.github.io/index.html), Derm7pt (https://derm.cs.sfu.ca/
Welcome.html), ISIC2024 (https://www.kaggle.com/competitions/isic-2024challenge), Med-Node (https://www.kaggle.com/datasets/prabhavsanga/med-node),
DermNet (https://www. kaggle.com/datasets/shubhamgoel27/dermnet), WSI (https://portal.gdc.cancer.gov/projects/TCGA-SKCM), PATCH16 (https://heidata.uni-
heidelberg.de/dataset.xhtml?persistentld=doi:10.11588/data/7QCR8S), ISIC2018 taskl and HAM10000 (https://challenge.isic-archive.com/data/), SDDI1 (https://
api.isicarchive.com/collections/328/), PH2 (https://www.fc.up.pt/addi/ph2%20database.html), and SD-128 (https://huggingface.co/datasets/
resyhgerwshshgdfghsdfgh/SD-198). Access to in-house datasets is restricted due to patient privacy considerations. These include MMT for dermoscopic and clinical
image pretraining and downstream multi-skin condition classification, NSSI for sequential dermoscopic image pretraining, ACEMID path for dermatopathology
pretraining, Edul and Edu? for clinical image pretraining, SDDI2 for lesion change detection, SDDI Alfred for reader study 1 (early-melanoma detection), and the TBP
data from MYM and HOP studies for all TBP-based pretraining and evaluation. Researchers interested in accessing these datasets should direct their requests to the
corresponding author. All requests will receive a response within two weeks of submission. Requests will be evaluated according to institutional and departmental
policies to ensure compliance with intellectual property rights and patient privacy obligations. The availability of these data may be subject to additional restrictions
or requirements.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Biological sex information for HAM10000 dataset was considered for model robustness experiments. Experiments were
conducted both on female and male (detail in Extended Data Table 22).

Reporting on race, ethnicity, or = We examine diagnostic accuracy across images of different skin tones based on the Fitzpatrick Skin Type scale, utilizing the

other socially relevant public Fitzpatrick17k (https://github.com/mattgroh/fitzpatrick17k) and DDI datasets (https://stanfordaimi.azurewebsites.net/

groupings datasets/35866158-8196-48d8-87bf-50dca81df965) to evaluate our foundation model's performance across different skin
tones.

Population characteristics Population characteristics used in this study are available in Supplementary Table 32-35 and 39-40.

Recruitment No patient recruitment was necessary for using these dermatological images retrospectively

Ethics oversight MYM study was approved by the Metro South Health Human Research Ethics Committee on 21 April 2016 (approval number:

HREC/16/QPAH/125). Ethics approval has also been obtained from the University of Queensland Human Research Ethics
Committee (approval number: 2016000554), Queensland University of Technology Human Research Ethics Committee
(approval number: 1600000515) and QIMR Berghofer (approval number: P2271).

The HOP study has received Human Research Ethics Committee (HREC) approval from Metro South Health HREC (HREC/17/
QPAH/816) and The University of Queensland HREC (2018000074).

The ComBineMel dataset is part of the Computer biomarkers evaluation of invasive melanoma (ComBine Mel) study. The
study was approved by the Alfred Hospital Ethics Committee on 08 August 2023 (approval number: HREC/98200/
Alfred-2023). The study follows the National Statement on Ethical Conduct in Human Research (2007) protocols.

SDDI2 dataset is approved by the Ethics Review Board of the Medical University of Vienna.

MMT data study is part of a research agreement study with Monash eResearch Centre and was approved through the
Monash University Human Research Ethics Committee (MUHREC).

The NSSI dataset is part of the Brisbane Naevus Morphology Study, circa 2009-2014. The study followed the Declaration of
Helsinki protocols and was approved by the Princess Alexandra Hospital human research ethics committee. The
ACEMID_path study has received approval from the Alfred Hospital Ethics Committee (approval number: 746/23) to share
data accrued for registered trial ACTRN12619001706167 (ACEMID) under the Metro South Human Research Committee
protocol HREC/2019/QMS/57206 and the University of Queensland Human Research Ethics Committee protocol
2019003077. The SDDI_Alfred study has received approval from the Alfred Hospital Ethics Committee (approval number:
198/19) for use of sequential dermoscopic imaging data. Only de-identified retrospective data was used for research, without
the active involvement of patients.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Our sample size was determined based on the availability of high-quality multimodal dermatological data collected from our collaborating
hospitals, universities, and select public datasets. We did not pre-define the sample size as our goal was to maximize foundation model
performance by incorporating the largest possible training dataset.

For pre-training, we utilized a comprehensive collection of images across multiple modalities: 405,856 TBP titles from HOP and MYM cohorts
and 352,034 TBP tiles from the public ISIC2024 dataset; 316,499 dermoscopic images from the MMT dataset, 38,110 from HOP and MYM
cohorts, and 29,832 from the NSSI dataset; 310,951 clinical images from MMT, 81,947 from Edul, and 67,430 from Edu2; and 377,764
dermatopathology tiles from TCGA-SKCM, 88,971 from UAH89K, and 80,312 from ACEMID.

Given that most prior self-supervised dermatological models were trained on significantly smaller web datasets (2-20 times smaller), we
anticipated that our collection of over 2 million high-quality multimodal data points from real-world would be sufficient to train an effective
dermatology foundation model. For information about downstream datasets, please refer to the 'Datasets and Evaluation' subsection in the
Methods section of the manuscript.
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Data exclusions  For pre-training data curation, we excluded sensitive data that could potentially identify individuals, such as human faces, as well as low-
quality images containing a high proportion of irrelevant background elements like dense hair, clothing, or extraneous environmental details.

Replication Replication attempts using our code successfully reproduced the reported model results, validating the reliability and reproducibility of our
findings. Code is available at https://github.com/SiyuanYan1/PanDerm

Randomization For downstream evaluations requiring train, validation, and test splits, we utilized official splits provided by the original dataset creators when
available. In cases where official splits were not provided, we created random splits. To prevent data leakage, we generally implemented
patient-level stratified randomization when possible, ensuring that data from the same patient remained within a single split.

Blinding When randomly assigning patients to training, validation, and testing groups, investigators were blinded to patient covariates and all dataset

features not essential for conducting the research. For reader studies, raters were not allocated into experimental groups. Images were
randomly selected according to the protocol described in the Methods section.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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